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 Section 1: Network structures and training
This part gives extra information for constructing and training the neural networks used to deal with the template struc-
tures (color inverse design problem) and free-form structures (transmission spectrum inverse design problem). 

Template structure: Multilayer Perceptrons (MLPs) 

1) Tandem networks
X Y

yi = (Hi,Di, Pi,Gi) xi = (xi, yi,Yi)

To reduce confusions on notations, in both forward prediction and inverse design, we use  to denote colors, and  to
denote structures. A training data is a combination of one structure ,  and one color .
As  shown  in Fig.  1(a),  the  tandem  networks  are  constructed  by  connecting  outputs  of  the  inverse  neural  networks
(INNs) to the input of the forward neural networks (FNNs). FNNs are MLPs that have four-layer fully connected layers,
with 64 neurons in each layer. FNNs take in the 4-dimensional structures and output the 3-dimensional color coordin-
ates. INNs are also MLPs that have four-layer fully connected layers with 64 neurons in each layer, and they take in the
3-dimensional color coordinates while output the 4-dimensional structures.

Y → X

X → Y

Training tandem networks is a two-step process. The first step is to train the FNNs. During training, FNNs learn the
mapping  by minimizing the mean square error (MSE) loss of predicted colors with respect to the target color,
which is shown in Eq. (1) in the main text. After training the FNNs, FNNs can be used as a surrogate model to predict
the color for a given new structure input. The second step is to train the INNs. Now the parameters of FNNs are fixed,
and the FNNs are connected to the output of INNs to supervise the learning of INNs. After INNs give the structure pre-
dictions, FNNs can immediately predict their colors. The INNs learn one branch of the mapping  by minimizing
the MSE loss of the predicted color given by this pre-trained FNNs, which is shown in Eq. (2) in the main text. Fig. S1(a)
shows the loss curves during training of the FNNs.

LINNs =
1
N
∑N

i

(
x̂ipred − xi

)2

xi x̂ipred x̂ipred

x̂ipred

In order to avoid over-fitting and pick up the best model, we use the technique of early stopping1 (this technique is
also used in all other models considered in this work) and validate the tandem networks’ inverse design accuracy on the

validation dataset. During validation, the one with the smallest MSE loss  is picked up as the

final model, where  is the target color, and  is the predicted color. The predicted color  related to the predicted
structure is supposed to be calculated by electromagnetic (EM) simulation. To facilitate training, we use the pre-trained
FNNs to calculate the color  related to the inverse predicted structure given by INNs. However, if we use the same
FNNs during training and validation, the INNs will leverage the FNNs, and give predictions that are accurate only us-
ing forward model, but not accurate using RCWA simulations. To avoid this model bias, in the first step during train-
ing, two different FNNs will be trained separately. Later on, one of the FNNs is used to train the INNs, and another one
is used to pick up the best model based on the validation dataset. We call these two FNNs training FNNs and validation
FNNs, respectively. In Fig. S1(b), we show the loss curve during the training of tandem networks, as well as the valida-
tion loss using two different FNNs. Clearly, we can see the model strong bias when we use the same training FNNs for
validation.

After sufficient training and validation, the INNs are used to inverse predict a possible structure for a given color tar-
get. 

2) Variational Auto-Encoders:

X
Y Z Z

z
pθ (z| x) X y

pθ (y|x, z) θ
qϕ (z| y, x) pθ (y|x, z) , pθ (z|x)

As mentioned in the main text, we are using the conditional-VAEs (c-VAEs), which are introduced in ref.2 (named as
conditional generative model in this paper). In c-VAEs, the color targets  are treated as conditional input variables, the
structures  are treated as the output variables, and  are treated as the latent variables. Usually, the latent variables 
are chosen to follow the normal distribution. The c-VAEs learn the inverse design by first drawing  from the prior dis-
tribution  on the condition of given colors input , then giving predictions of structures  based on the distribu-
tion of .  denote the network parameters.  C-VAEs include three neural networks:  the recognition networks

, the generation networks  and the conditional prior networks . In terms of network struc-
tures,  all  three  neural  networks  in  the  c-VAEs  are  MLPs  that  have  4-layer  fully  connected  layers,  with  64  neurons  in
each layer. The latent space is 3-dimensional normal distribution.

We find that connecting the pre-trained FNNs to c-VAE can improve the accuracy.  Therefore,  the overall  network
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structures for c-VAEs are shown in Fig.  2(b).  We are using the same pre-trained training FNNs and validation FNNs
from the tandem networks to supervise the training and validation process of c-VAEs. Therefore, we do not need to re-
train the FNNs again.

z

α = 10

During training, the recognition networks take in the structure information and conditional colors, and encode them
together  into  the  latent  space .  The  generation  networks  then  decode  the  latent  variables  back  into  structure  space
based on the conditional colors. The conditional prior networks will learn a temporary mapping from the color space to
structure  space.  These  predicted  structures  from  conditional  prior  networks  will  not  be  used  for  c-VAEs,  but  will  be
helpful during validation and inverse predicting, where the structure information is no longer available. The loss func-
tion is given in the main text in Eq. (3). During training, we find a larger  in Eq. (3) works better in order to im-
prove the accuracy.

Lpred =
1
N
∑N

i

(
x̂ipred − xi

)2
x̂ipred

The validation process is different from the training process. During validation, we need to inverse predict structures
for given color inputs. However, because there are no structures as the inputs for the recognition networks (we need to
inverse predict these structures), we cannot use the recognition networks to encode and find the distribution of the lat-
ent variables.  Therefore,  the first  step during validation is  using the conditional  prior  networks to  provide the recon-
structed structures for the recognition networks. Later on, we pass the reconstructed structures together with colors to
the recognition networks, and encode into the latent variables. The generation networks will later decode the latent vari-
ables back to the final predicted structures based on the conditional color input. In order to pick up the best model, we
validate  the  predicted  structures’ color  accuracy  by  feeding  the  predicted  structures  into  the  validation  FNNs,  and

choose the model with the smallest MSE loss , where the color  is predicted by the valida-
tion FNNs. Figure S1(c) shows the loss curves during training and validation of c-VAEs.

After sufficient training and validation, the c-VAEs can be used to inverse predict the possible structure for a given
color target. The prediction process is similar to generation in the validation process. 

3) Generative Adversarial Networks
As mentioned in the main text, we are using conditional-GANs (c-GANs). The network construction is similar to ref.3.
As shown in Fig. 1(c), the c-GANs also consist of two neural networks: the generator networks and the critic networks.
The generator networks are MLPs that have four-layer fully connected layers, with 64 neurons in each layer, and it takes
in both 3-dimensional color X and an extra 3-dimensional random noise Z, and outputs generated 4-dimensional struc-
tures Y.  Because of the introduction of random variables Z,  c-GANs are able to learn one-to-many mapping based on
different conditions and give multiple predictions. The critic networks are also MLPs that have four-layer fully connec-
ted layers, with 64 neurons in each layer, but it takes in the 4-dimensional structures and the 3- dimensional color, and
outputs a single value in the range of (0,1), which represents the possibility of being real.

The training procedure of c-GANs requires the co-training of the generator networks and the critic networks. In each
iteration, the generator and the critic are updated consecutively. The loss function is given in the main text in Eq. (4).
During training, the generator networks always generate fake structures to fool the critic, while the critic networks al-
ways try to distinguish real structures from fake structures based on the conditional color. Therefore, the generator net-
works will try to minimize this loss function, while the critic networks will try to maximize this loss function.

Lpred =
1
N
∑N

i

(
x̂ipred − xi

)2

x̂pred
x

Again, we validate the accuracy of inverse prediction on the validation dataset to avoid over-fitting. To pick up the

best model,  we use the same validation FNNs, and calculate the MSE loss .  This is done by

connecting the output of the generator to the input of the validation FNNs. The color  is predicted by FNNs, which
corresponds  to  the  inverse  designed  structures  given  by  the  generator  networks  based  on  a  given  color  target .  The
model  with  the  smallest  MSE  loss  is  selected  as  the  best  c-GANs  model. Fig. S1(d) shows  the  loss  curves  during  the
training of the c-GANs.

After sufficient training and validation, the generator is used to inverse predict a possible structure based on the con-
ditional input of color target.

The training parameters for all three models as well as their training time are summarized in the Table S1. For Table 1
in  the  main  text,  we  report  the  average  performance  when  we  train  each  model  starting  from  five  different  random
seeds. 

Ma et al. Opto-Electron Sci  1, 210012 (2022) https://doi.org/10.29026/oes.2022.210012

210012-S3

 

https://doi.org/10.29026/oes.2022.210012
https://doi.org/10.29026/oes.2022.210012
https://doi.org/10.29026/oes.2022.210012
https://doi.org/10.29026/oes.2022.210012
https://doi.org/10.29026/oes.2022.210012
https://doi.org/10.29026/oes.2022.210012
https://doi.org/10.29026/oes.2022.210012
https://doi.org/10.29026/oes.2022.210012
https://doi.org/10.29026/oes.2022.210012
https://doi.org/10.29026/oes.2022.210012
https://doi.org/10.29026/oes.2022.210012
https://doi.org/10.29026/oes.2022.210012


Free-form structure: Convolutional neural networks (CNNs)

90/180/270

For the transmission spectrum inverse design problem with free-form structures, instead of the MLPs, we use the CNNs
to deal  with the image information.  As suggested in ref.4,  adding the loss  of  structural  similarity  index (SSIM) with a
factor of 0.05 in the total loss function will help all models to learn the characteristics of images better. To increase the
amount of data,  we implement data augmentation by rotating each shape by ,  followed by exchanging the
TE and TM responses.  Because of the added SSIM loss,  in order to guarantee the convergence of inverse design, data
augmentation is only applied when training the forward neural network.

We build up our three neural network models using the same structures shown in Fig. 1, and use the same training,
validation, and inverse predicting process described before. Because of the introduction of the convolution layer, the de-
tailed constructions of each neural networks will be different. Figs. S2, S3, S4 show the CNNs used for tandem networks,
c-VAEs,  and c-GANs,  respectively.  We summarize the training parameters  as  well  as  their  training time used in each
model in Table S2. The training curves for each model are also shown in Fig. S5. For Table 2 in the main text, we report
the average performance when we train each model starting from three different random seeds.

We provide all code and simulation data on GitHub5, where detailed network structures and training procedure are

Table S1 | The training hyperparameters as well as their estimated training time for the FNNs, the tandem networks, the c-VAEs, and c-
GANs in the template structure inverse design.
 

FNNs Tandem networks c-VAEs c-GANs

Dimension of z / / 3 3

Learning rate 0.001 0.0005 0.001
Generator: 0.00005

Critic: 0.0001
Batch size 128 128 128 128

Optimizer Adam Adam Adam Adam

Training time ~1.4 h ~2 h ~3.5 h ~8.5 h

 

10−2

10−3

Lo
ss

10−4

0 2000 4000
Epochs

6000 8000

Training loss

Forward neural network

Val loss

Training loss Val loss

Training generator loss
Training critic loss

10000

a

10−2

10−1

10−3

Lo
ss

10−4

0 20001000 40003000
Epochs

5000 6000 7000

Training loss

Tandem network

Val loss using training FNNs
Val loss using validation FNNs

8000

b

100

Lo
ss

10−1

0 1000 2000
Epochs

3000 4000

Training loss

c-VAEs

Val loss

5000

c a

4×100

3×100

2×100

Lo
ss

0 2500 5000 7500
Epochs

100001250015000

c-GAN

17500

d

3.0
2.5
2.0

Lo
ss 1.5

1.0
0.5

0 5000 10000
Epochs

15000

Fig. S1 | The training curve for each model in the template structure inverse design problem, where the blue and orange curve refer to
training loss and validation loss. Notice that different models have different loss functions, so we cannot compare their relative values directly.

(a) Training curve of the FNNs. (b) Training curve of the tandem networks. The extra green line is the validation loss by the validation FNNs. We

can see that model bias is strong if we use the same FNNs model for both training and validation. (c) Training curve of c-VAEs. (d) Training curve

of the c-GANs. The inset shows the generator loss and critic loss during training, where the generator loss is maximized, and the critic loss is

minimized.
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included. Usually, activation functions are also considered as a critical component of neural network architectures. We
are using the most widely used activation functions that have been shown to work well on different inverse design prob-
lems,  which  can  also  be  found  on  GitHub5.  Most  other  commonly  used  activation  functions  that  are  proper  for  the
problems can also lead to a similar conclusion.

Table S2 | The training hyperparameters as well as their estimated training time used for the FNNs, the tandem networks, the c-VAEs,
and c-GANs in the free-form structure inverse design.
 

FNNs Tandem networks c-VAE c-GAN

Dimension of z / / 50 50

Kernel size 9 3 5 5

Learning rate 0.0005 0.0001 0.0001
Generator: 0.001

Critic: 0.0001
Batch size 1024 256 256 256

Optimizer Adam Adam Adam Adam

Training time ~1.2 days ~0.7 day ~1.4 days ~2.8 days
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Fig. S2 | The CNNs of tandem networks for the free-form structures. (a) The structure of the FNNs. To combine period information into an

image, we first map this one-by-one scaler of the period into a 4096-by-1 vector using a single FC, then reshape this vector into a 64×64 size im-

age. This one-depth image transformed from the period is further concatenated with the 2D image pattern, which corresponds to the free-form

structure after the convolution with kernel size k=1. We can change the depth of concatenation by changing the m and n. By default, the depth of

period and image during concatenation is 1. Later on, 5-layer convolutional layers are used to recognize and extract image features into a 256-

depth two-by-two matrix. After reshaping this matrix into a 1024-by-1 vector, two fully connected layers are connected to process features and

mapping into the 58-dimensional spectrum. (b) The structure of the INNs, which map the spectrum information into the 2D image patterns and

one-dimensional period. First, a fully connected layer transforms the 58-by-1 spectrum vector into a 1024-by-1 vector, which will be reshaped in-

to a 256-depth 2-by2 matrix. After this, the transpose convolution is used to generate images layer by layer. After the four consecutive transpose

convolution layers,  the network  will  be divided into  two parts.  The upper  branch takes another  transpose convolution and generates 16-depth

64×64 matrix, and does another convolution to generate the predicted 2D image pattern. The lower branch also takes another transpose convolu-

tion action, but only generates the 1-depth 64×64 matrix. This matrix will be reshaped into a 4096-by-1 vector. A fully connected layer is used to

transform this 4096-by-1 vector into the one-by-one predicted period. This is also the same structure of the conditional prior networks in c-VAEs.

The training, validation, and generating process of tandem networks are similar in the template structures, and therefore not described again.
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Fig. S3 | The CNN network structure of the c-VAEs for the free-form structures. C-VAEs include three neural networks: the recognition net-

works, the generation networks, and the conditional prior networks. Specifically, the conditional prior networks use the same constructions as the

INNs, which is shown in Fig. S2(b). Therefore, we do not include them here. (a) The structure of the recognition networks, which are used to find

the latent distribution . The network structures are similar to the structures of the FNNs. We will first map 58-dimensional spectrum vector into a

4096-by-1 vector using a single FC, then reshape this it into a 64*64 size image. Similar procedures are done for the scalar of the period. These

two images transformed from the spectrum and the period are further concatenated with the 2D image pattern, which corresponds to the free-

form structure after the convolution with kernel size k=1. We can change the depth of concatenation by changing the m, n and p. By default, we

set m=n=p=1. Later on, 5-layer convolutional layers are used to recognize and extract these image features into a 256-depth two-by-two matrix.

Different from the FNNs, after reshaping this matrix into a 1024-by-1 vector, two separate fully connected layers are connected to process fea-

tures and mapping into two different 50-dimensional vectors, which describe the mean value μ and variance ν of the latent variables. These 50-d

vectors are later used to construct the latent variables that follow the gaussian distribution. (b) The structure of generation networks, which gener-

ate predicted structures based on spectra and latent variables. The neural network structure is very similar to the INNs in Fig. S2(b). The only dif-

ference is that for the input, both spectrum vector and latent variables are concatenated into a 108-by-1 long vector.
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The network structure is very similar to the INNs shown in Fig. S2(b). The only difference is that both spectrum vector and random variables are

concatenated into a 108-by-1 long vector for the input. (b) The structure of the critic networks. The network structures are similar to the struc-

tures of the recognition network in the c-VAEs, which is shown in Fig. S3(a). The generator also takes in the structures as well as the spectra. Dif-

ferent from the recognition networks in c-VAEs, after reshaping this matrix into a 1024-by-1 vector, only one fully connected layer is connected to

process these features by mapping them into a scalar.  This  scalar  represents a scores that  given the conditional  input  of  spectra,  if  the input

structures come from the original training dataset or the generator. During training, for the structures contained in the training dataset, critic net-

works will always give high scores, while for the generated structures given by the generator, critic networks will always give low scores. There-

fore, after training, the generator network will try to generate structures similar to the training structures such that critic networks tend to give high

scores.

Ma et al. Opto-Electron Sci  1, 210012 (2022) https://doi.org/10.29026/oes.2022.210012

210012-S7

 



 Section 2: Template structures
This part gives extra information for performance comparisons in the template structures. 

Choosing the size of dataset
In both tasks, we are using a finite size of the training dataset. In principle, when the data volume is infinitely large such
that a good coverage of the entire design space is guaranteed, these three networks would give accurate inverse predic-
tions. Since the dataset is generated based on EM simulations, obtaining a sufficiently large dataset to achieve this ideal
performance is usually impractical,  and the performance when dataset size is limited is of more practical interest.  We
choose the size of the dataset in our manuscript so that these datasets can be collected in a reasonable amount of time
but can still  provide good performance.  Thus,  we believe  our  conclusions  can faithfully  reflect  the  accuracy perform-
ance of these deep learning-based inverse design models in practical settings. 

R2 scores and MAE of color
R2

(x, y,Y)
R2

A detailed comparison of  scores and MAE for the color inverse design is shown in Fig. S6, where Fig. S6(a) and Fig.
S6(e) show the performance of FNNs, which are used to predict the color for a given structure input. In Fig. S6(a), the x
axis is the ground truth of three target color coordinates, while the y axis is the predicted color coordinates given by the
FNNs.  Three  figures  show  the  three  color  coordinates  of ,  respectively.  In Fig. S6(e),  the x axis  is  the  ground
truth of the target color coordinates, while y axis gives the MAE of predicted color coordinates. The high  score and
low MAE mean that the FNNs are very accurate in predicting colors for a given structure.

R2In Fig. S6(b–d), we give more details of  scores for the three models: Tandem networks, c-VAEs, and c-GANs, re-
spectively. The x axis is the ground truth of the target color coordinates, while the y axis is the predicted color coordinates

 

10−2

104

102

100

10−2

10−4

10−6

10−8

500 1500 2500 3500

10−3

0 500 1000
Epochs

1500 2000

Lo
ss

Training loss

Forward neural networks

Val loss

a
0.01

0.00

−0.01

−0.03

−0.02

0 50 100
Epochs

200150 250 300

Lo
ss

Training loss

Tandem networks

Val loss

b

40

30

20

0

10

0 500 1000
Epochs

Epochs

20001500 2500 35003000

Lo
ss

Lo
ss

Training loss

c-GANs
c-GANs

Val loss

d

0.03

0.01

0.02

0.00

−0.01

−0.03

−0.02

0
Epochs

200100 300 500400

Lo
ss

Training loss

c-VAEs

Val loss

c
Training generator loss
Training diacriminator loss

Fig. S5 | The training curves for each model in the free-form structure inverse design problem, where the blue and orange curves refer
to training loss and validation loss. Notice that different models have different loss functions, so we cannot compare their relative values dir-

ectly. (a) Training curve of the FNNs. (b) Training curve of tandem networks. (c) Training curve of c-VAEs. (d) Training curve of the c-GANs. The

inset shows the generator loss and critic loss during training, where generator loss is maximized, and critic loss is minimized.

Ma et al. Opto-Electron Sci  1, 210012 (2022) https://doi.org/10.29026/oes.2022.210012

210012-S8

 



given by the predicted structures from each model. The predicted color coordinates are calculated using RCWA. In Fig.
S6(f–h),  we  give  more  details  of  MAE  for  the  three  models:  Tandem  networks,  c-VAEs,  and  c-GANs,  respectively.
Again, the y axis is the MAE between target color coordinates and predicted color coordinates correspond to the pre-
dicted structures. 
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Fig. S6 | A detailed comparison of R2 scores and MAE for the color inverse design. (a–d) The details of R2 scores of FNNs, tandem net-

works, VAEs and GANs. (e–h) The absolute difference of color for FNNs, tandem networks, c-VAE and c-GAN
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More examples of color inverse design
 

The diversity of inverse designing brown and yellow color 

 

a x=0.223
y=0.279
Y=0.212

x=0.310
y=0.212
Y=0.201

x=0.467
y=0.341
Y=0.273

x=0.496
y=0.450
Y=0.254

x=0.314
y=0.565
Y=0.233

x=0.451
y=0.428
Y=0.488

x=0.444
y=0.375
Y=0.333

x=0.283
y=0.554
Y=0.457

x=0.383
y=0.443
Y=0.611

x=0.448
y=0.363
Y=0.437

Δx=0.0034
Δy=0.0011
ΔY=0.0115

Δx=0.0025
Δy=0.0010
ΔY=0.0031

Δx=0.0309
Δy=0.0072
ΔY=0.0003

Δx=0.0107
Δy=0.0173
ΔY=0.0190

Δx=0.0072
Δy=0.0067
ΔY=0.0003

Δx=0.0035
Δy=0.0021
ΔY=0.0030

Δx=0.0039
Δy=0.0041
ΔY=0.0043

Δx=0.0001
Δy=0.0003
ΔY=0.0023

Δx=0.0058
Δy=0.0047
ΔY=0.0025

Δx=0.0019
Δy=0.0062
ΔY=0.0064

Δx=0.0038
Δy=0.0061
ΔY=0.0136

Δx=0.0056
Δy=0.0014
ΔY=0.0033

Δx=0.0054
Δy=0.0034
ΔY=0.0061

Δx=0.0019
Δy=0.0031
ΔY=0.0043

Δx=0.0019
Δy=0.0066
ΔY=0.0021

Δx=0.0013
Δy=0.0002
ΔY=0.0063

Δx=0.0092
Δy=0.0012
ΔY=0.0023

Δx=0.0014
Δy=0.0011
ΔY=0.0058

Δx=0.0013
Δy=0.0110
ΔY=0.0284

Δx=0.0043
Δy=0.0014
ΔY=0.0011

Δx=0.0024
Δy=0.0001
ΔY=0.0032

Δx=0.0307
Δy=0.0236
ΔY=0.0225

Δx=0.0019
Δy=0.0005
ΔY=0.0026

Δx=0.0011
Δy=0.0047
ΔY=0.0025

Δx=0.0001
Δy=0.0064
ΔY=0.0049

Δx=0.0002
Δy=0.0042
ΔY=0.0068

Δx=0.0056
Δy=0.0038
ΔY=0.0077

Δx=0.0003
Δy=0.0025
ΔY=0.0139

Δx=0.0006
Δy=0.0123
ΔY=0.0166

Δx=0.0075
Δy=0.0018
ΔY=0.0257

b

c

d

Fig. S7 | Another 10 examples of color inverse design. Row (a) is the target color, where the inset numbers are the color CIE coordinates.

Row (b–d) correspond to the predicted colors correspond to the structures predicted by the tandem networks, the c-VAEs, and the c-GANs, re-

spectively, and the inset numbers are the absolute CIE difference between the inverse predicted color and the targe color.
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Fig. S8 | (a)  The  histogram distribution  of 1000 inverse  designed  structure  parameters  for  the  brown  color  (c)  with  the  CIE  coordinates  (x, y,

Y)=(0.4320, 0.4404, 0.5415). (b) The 3-dimensional color distribution is related to 1,000 inverse designed structures. We can see all these pre-

dicted structures give fairly accurate brown color. (c) The target brown color with coordinates (x, y, Y)=(0.4320, 0.4404, 0.5415). (d) The color

corresponding to  the  structure  predicted by  tandem networks.  (e) The randomly  selected 40 different  colors  correspond to  the  structures  pre-

dicted by the VAE. (f) The randomly selected 40 different colors corresponding to the structures predicted by the GAN.
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The robustness analysis of reproducing a painting
In Fig.  3(c–h),  we provide a real  application of  reconstructing the Vincent van Gogh’s  painting:  Fishing Boats on the
Beach at Saintes Maries-de-la-Mer. For the inverse designed structures given by each model, we are supposed to use the
electromagnetic (EM) simulators to validate their colors. However, since there are millions of pixels inside this painting,
we are using the trained evaluation forward model to calculate their colors. Now we will analyze the robustness of the
painting reproduction. For each color pixel, we examine if the predicted structure is a faulty design (meaning the pre-
dicted structure does not satisfy the constraints of the physical systems). If it is,  we change the corresponding pixel to
white color. We analyze all the reconstructed images in Fig. 3(d–h), and show the results in Fig. S10(b–f). Based on the
number of white pixels, we can see that there is a higher chance for tandem networks to give failed structures. Also, in-
creasing the sampling times for VAEs and GANs can further improve the robustness slightly.

In Fig. S11(b), we show the color distribution corresponding to the white pixels in each model in the CIE chromatic
diagram. These colors are the failed colors for each model (meaning the inverse designed structures are not physical).
We can see that most of these failed colors are located at a region where the training dataset is pretty sparse (shown in
Fig. S11(a)).  Therefore,  in  order  to  provide  a  better  platform  for  future  researchers  to  benchmark  and  compare  their
own models and new implementations, we will also create new datasets that are uniformly distributed in the chromatic
diagram and provide them on GitHub5 in the future. 
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Fig. S9 | (a)  The  histogram distribution  of 1000 inverse  designed  structure  parameters  for  the  yellow  color  (c)  with  the  CIE  coordinates  (x, y,

Y)=(0.3851,  0.4320,  0.6305).  (b) The 3-dimensional  color  distribution  related  to  1,000 inverse  designed structures.  We can see all  these pre-

dicted structures give fairly accurate yellow color. (c) The target yellow color with coordinates (x, y, Y)=(0.3851, 0.4320, 0.6305). (d) The color

corresponding to the structure predicted by tandem networks. (e) The randomly selected 40 different colors corresponding to the structures pre-

dicted by the VAE. (f) The randomly selected 40 different colors corresponding to the structures predicted by the GAN.
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The robustness of size of array for a pixel
As mentioned in the main text, the previous comparisons and discussions are based on the idea that the predicted struc-
ture is represented inside a periodic unit cell. The corresponding structure color is calculated using this periodic bound-
ary conditions, assuming the same structure extends to infinity. This condition can be applicable if we are considering
pure color printing. However, for the real application, such as image reconstruction, we cannot assume that the struc-
ture is periodic anymore. For each color pixel, we need to consider an array with finite number of unit cells6. In order to
find the structure color associated with a specific nonperiodic structure, we use FDTD to simulate a large region, which
contains different number of  unit  cells.  Inside this  region,  these unit  cells  form an array.  Specifically,  we consider the
size of array to be 2 by 2, 3 by 3, 4 by 4, and 5 by 5. During simulation, we set the simulation region to include the whole
region  of  the  array  and  change  boundary  conditions  to  perfect  matching  layers.  The  simulated  reflection  spectra  are
used to calculate the structure color. 

 Section 3: Free-form structures
This part gives extra information for performance comparisons in the free-form structures. 
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Tandem VAE GAN

a c e

b d f

Fig. S10 | The robustness analysis in Fig. 3(c–h). The white color in each image means the model fails to inverse predict a physical structure

at this color pixel. (a) The original image of the Vincent van Gogh’s painting: Fishing Boats on the Beach at Saintes Maries-de-la-Mer. (b–f) The

robustness analysis corresponds to the image in Fig. 3(d–h).
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Image generation and post-process
The 2D patterns are randomly generated using the same algorithm in ref.4. During the generation of simulation samples,
some sharp structures can be generated. In order to satisfy the fabrication limitation, we smooth the structures so that
all  sharp  structures  satisfy  the  minimum  20  nm  radius  curvature7.  For  simulations  in  RCWA,  the  region  with  image
pixel equals to one is treated as silicon, while the region with the image pixel equals to zero is treated as air. However, for
the inverse predicted structures given by the neural networks, the pixel values may not equal to zero or one. We post-
process the  predicted  structures  by  setting  up  a  binarization  threshold  of  0.5.  Any pixel  values  greater  than 0.5  is  as-
signed to be one.

irr
irr irr

irr

In the main text, we introduce the quantity of  in order to evaluate the distribution of structures. We give several
examples  of  different  in Fig. S12,  showing  that  by  increasing  the ,  the  structure’s  irregularity  starts  to  increase.
Therefore, we can use this  to reveal part of the structure distribution. 
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Fig. S12 | Several images demonstrating that irr can be used as a criterion to describe the irregularity of images. As we can see, small
irr refers to a more regular-shaped images, while images are more irregular when irr is greater.
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More examples of color inverse design 
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Fig. S13 | More  examples  of  randomly  selected transmission spectrum inverse design for  the  tandem networks  (a, d, g),  VAEs (b, e, h),  and

GANs (c, f, i). The inset shows the original structure (upper) in the test dataset and the inverse predicted structure (lower) by each model.
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The diversity of another spectrum inverse design
 

The robustness in term of fabrication variations
In order to look at the tolerance of fabrication variations of the predicted structures, we change the shape of predicted
structures by shrinking, expanding, or smoothing by a small factor. In order to do this, we first do a gaussian convolu-
tion with different kernel size, and then do a binarization with different threshold. In Fig. S15, we give several examples
when we change the kernel size and the binarization threshold. We can see that increasing the kernel size will make the
edges of the structure smoother, while increasing or decreasing the binarization cutoff threshold can shrink or expand
the image.  When we consider the robustness in terms of  fabrication error,  we change the kernel  size from 3 to 7 and
change  the  binarization cutoff  threshold  from 0.1  to  0.5.  Their  corresponding  simulated  spectra  in  each case  are  also
shown in Fig. S15 for reference.
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Fig. S14 | Another  example  of  comparisons  of  diversity  for  three  models  in  the  template  structure  inverse  design. (a–c)  The  red  bar

shows the distribution of the normalized density of irregularity for 1,000 inverse predicted structures by tandem networks, VAEs and GANs, while

the green points are the scatter plot of spectrum RMSE VS the irregularity. According to the distribution of irregularity, we can see that tandem

networks only give one structure prediction, where the VAE gives limited diversity, and the GAN gives multi-modal structure distributions that cov-

ers a wide region. (d–f) A randomly-chosen structure from 1,000 predictions as well as its spectrum predicted by tandem networks, VAEs and

GANs. The inset shows the original structure (upper) in the test dataset and the predicted structure (lower) given by each model.
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Fig. S15 | First row: the considered fabrication error by changing the kernel size and binarization cutoff. Second row: the corresponding trans-

mission TE spectrum. The  axis is the wavelength in the unit of nm, and the y axis is the transmission spectrum.
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