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Section 1: The experiment setup of the sensitivity calibration for the fiber optic ultrasound sensor
In Fig. S1(a) and S1(b), the PZT is placed 30 mm against the ultrasound sensor and the PVDF hydrophone for calibra-
tion. When the output voltage of the signal generator is 1 V, the output signal of the PVDF hydrophone is depicted in
Fig. S1(c), with the signal amplitude of around 0.477 mV. Hence, the input ultrasound pressure can be calculated by Eq.
(S1).

VPP
P = S_h ,
where S,=17.2 mV/kPa is the sensitivity of the PVDF hydrophone when the ultrasound frequency is 500 kHz. There-
fore, the input pressure is calculated to be 27.73 Pa when the output voltage of the signal generator is 1 V.
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Fig. 81| (a) The relative position of the PZT and the fiber optic ultrasound sensor. (b) The relative position of the PZT and the PVDF hy-
drophone. (c) The output signal of the PVDF hydrophone when the voltage frequency is 500 kHz.

Section 2: The stability of the sensor in detecting ultrasound signals

To test the stability of the sensor during the scanning process, we carried out the experiment to detect the ultrasound
signal every 10 s in nearly 6 h, and the signal and ToF is quite stable in Fig. S2(a). The signal intensity is further ana-
lyzed in Fig. S2(b), where the intensity fluctuation is about 12%, which is negligible compared to the signal attenuation
caused by the batteries.
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Fig. 82 | (a) The signals during the scanning process. (b) The signal intensity during the scanning process.
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Section 3: The imaging result of a lithium-ion ferrous phosphate/graphite (LFP||Gr) battery

To verify the ability of the imaging system in BHM, a LFP||Gr battery is imaged via this fiber optic ultrasound imaging
system, and the result is described in Fig. S3(c), where we can see that the electrodes have been clearly imaged. The edge
of the battery is almost blue, indicating a low transmission of ultrasound. While the inner part of the battery shows a
higher signal compared to signal of the edge, which means the battery is still chargeable and not fault.
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Fig. 83 | (a) The front view of the LFP||Gr battery. (b) The side view of the LFP||Gr battery. (c) The imaging result of the LFP||Gr battery.

Section 4: The imaging results of the AFLMB during the formation process
In Fig. S6(b) and Fig. S6(c), the battery part and gas part are clearly separated, respectively. Then, the gas ratio is ac-
quired by dividing the number of elements in Fig. S6(c) by the number of elements in Fig. S6(b).

Applying the above method to the images in Fig. S4 and Fig. S5, the gas ratio variation during the formation process
can be plotted and analyzed.
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Fig. S4 | The ultrasound image of the AFLMB after charging for (a) 0 h, (b) 1 h, (c) 2 h, (d) 3 h, ()4 h, (f)5h, (g) 6 h, (h) 7 h, (i) 8 h, (j) 9 h, (k)
10 h, (1) 11 h, (m) 12 h, (n) 13 h.
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Fig. S5 | The ultrasound image of the AFLMB after discharging for (a) 1h, (b) 2h, (c) 3h, (d) 4h, (e) 5h, (f) 6h, (g) 7h, (h) 8h, (i) 9h, (j) 10h, (k)
11h, (1) empty.
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Fig. S6 | (a) The original ultrasound image of an AFLMB. (b) The battery part of the original ultrasound image. (c) The gas part of the original ul-
trasound image.

Section 5: The performance of conventional piezoelectric transducer with this fiber optic ultrasound sensor
The NEP of different piezoelectric transducers are listed in Table S1, where the minimum NEP of them is around sever-
al pascal, demonstrating a poorer performance compared with our work. The low NEP of around 63.5 mPa enables the
system to detect ultrasound signals with pretty low noise.

Table S1 | The NEP compared with conventional piezoelectric transducers.

CMUTS!" 52 PMUTS? PVDFs4-s6 Piezoelectric TUTS" ¢ Piezopolymer detectors®  This work
1.6 Pa;
0.085-0.23 mPa/Hz'"?; 530 Pa;
NEP 77 Pa, 86 Pa, 156 Pa 14 Pa; 0.3 Pa, 1.2 Pa 63.5 mPa
30.7 mPa/Hz'? 15.7 Pa, 11.9 Pa, 9.6 Pa
5.6 mPa/Hz"?

The NEP expressed in Pa and Pa/Hz!? can be described in Eq. (S2).

NEPy, = NEP,,, /- VB, (S2)
where B is the bandwidth of the sensor, which is 218 kHz in Fig. 2(e). Hence, the NEP of the sensor can be calculated as

13.6 uPa/Hz!"2. The result is quite smaller than the traditional piezoelectric transducer, indicating a great performance of
the sensor in detecting ultrasound waves.
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