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 Section 1: Refractive indies of materials
 

 Section 2: The effects of structural parameters
As shown in Fig. S2(a), with the increase of the number of bilayers of DBR, the main bandgap around 400 nm in the re-
flection  spectrum  of  the  FOTPP  tip  becomes  more  pronounced  and  stabilizes  when  the  number  of  bilayers  of  DBR
reaches  5.  Additionally,  the  number  of  secondary  bandgaps  at  longer  wavelengths  gradually  increases. Figure S2(b)
demonstrates that the deposition of the Pd film excites TPP within the main bandgap and induces FP resonance modes
of various orders within the different secondary bandgaps. Besides, the quality factor of the TPP increases with the num-
ber  of  bilayers,  but  its  resonance  depth  gradually  diminishes  when the  number  of  bilayers  is  large.  Therefore,  a  DBR
with 5 bilayers is employed in the study. Figure S2(c, d) demonstrate that the resonance wavelengths of FOTPP tip are
positively correlated with the Bragg wavelength, indicating that the operating wavelength is flexibly tunable. 
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Fig. S1 | Refractive indexes of (a) Al2O3 and (b) TiO2 measured by ellipsometry. Complex refractive indices of (c) Pd and (d) PdHx reported in

the literature.
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 Section 3: Reflection phase of Pd/ PdHx films
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Fig. S3 | Reflection phase of (a) Pd and (b) PdHx films at different thicknesses.

  

 Section 4: Effect of film thickness on sensing performance
Figure S4(a, b) show the experimental spectra of the FOTPP tip with Pd films of 28 nm and 36 nm, demonstrating a red-
shift  with  increasing  H2 concentration.  For  ease  of  comparison,  their  wavelength  shifts  are  summarized  in Fig. S4(c).
Experimental results indicate that the FOTPP tip with the thinnest Pd film exhibits the highest sensitivity, approximate-
ly 1.24 nm/1%. The sensitivities of FOTPP tips with 36 nm and 50 nm Pd films are comparable, with the 50 nm Pd film
being slightly higher, consistent with theoretical calculations. Figure S4(d, e) also show that the FOTPP tip with a thin-
ner Pd film has a faster response and recovery speed. Therefore, to achieve greater reproducibility of the FOTPP tip’s
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Fig. S2 | The effects of structural parameters on the characteristic spectra of the FOTPP tip. Dependence of the spectra of the FOTPP tip, both

without and with a Pd film, on (a, b) the number of bilayers and (c, d) Bragg wavelength of DBR.
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sensitivity, a thicker Pd film should be selected. In contrast, for optimal sensor performance, a thinner Pd film is prefer-
able. Furthermore, Figure S4(f, g) demonstrate the average responses of the FOTPP tips with 28 nm and 36 nm Pd films
in multiple detections of 0.5% H₂ concentration are 0.624 nm and 0.378 nm, respectively, with corresponding standard
deviations of 0.0469 nm and 0.0318 nm. These small standard deviations confirm the FOTPP tips with thinner Pd films'
capability for repeated detection of low-concentration H2 and their long-term durability. 

 Section 5: The stability of FOTPP tips
In practical applications, quantitative characterization of the stability of FOTPP, particularly under photothermal condi-
tions, is essential. Figure S5(b–d) illustrate the resonance wavelength fluctuations of the FOTPP tips during prolonged
exposure  to  air.  The  red  and  blue  curves  represent  scenarios  with  and  without  photothermal  assistance,  respectively,
with  their  standard  deviations  depicted  above  the  curves.  Experimental  results  show  that  the  standard  deviations  of
FOTPP tips are comparable under thermal and non-thermal conditions. Specifically, the maximum standard deviation
is 0.0253, while the minimum standard deviation is as low as 0.0148. This underscores the excellent stability of FOTPP
tips in both photothermal and non-photothermal conditions, highlighting their suitability for practical applications. 
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Fig. S4 | Experimental  measurement  of  the  effect  of  Pd  film  thickness  on  the  sensing  performance  of  FOTPP  tip.  Reflection  spectra  of  the

FOTPP tips with (a) 28 nm and (b) 36 nm Pd films under various H2 concentrations ranging from 0.5% to 3.5%. (c) The wavelength redshifts for

three distinct FOTPP tips at various H2 concentrations. Real-time wavelength shift response of FOTPP tips with (d) 28 nm (e) 36 nm Pd films to

increasing and decreasing H2 concentration pulses,  ranging from 0.5% to  3.5% and 3.5% to  0.5%. The real-time wavelength response of  the

FOTPP tips with (f) 28 nm and (g) 36 nm Pd films in continuously repeated 0.5% H2 concentration detection.
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 Section 6: Photothermal assistance for different Pd film thicknesses
It should be noted that the photothermal characteristics of FOTPP tips are closely related to the thickness of the Pd film.
Figure S6(a) illustrates the absorption spectra around 785 nm for the three FOTPP tips with different Pd film thickness-
es. The results indicate that the absorption of the FOTPP tip decreases as the Pd film thickness increases, which affects
the temperature changes. Experimentally measured thermal images of the FOTPP tips with 28 nm and 36 nm Pd films
are shown in Fig. S6(b) and S6(c). These images reveal that the surface temperatures of the FOTPP tips with thinner Pd
films are higher, with the 28 nm Pd film showing the highest surface temperature. Figure S6(d) summarizes the surface
peak temperature  of  the  FOTPP tip  from numerical  simulations  and experimental  measurements  as  a  function of  Pd
film thickness.  The results  further verify that  the intensity of  the photothermal effect  is  negatively correlated with the
thickness of the Pd film. Furthermore, the H2 sensing performance of FOTPP tips with 28 nm and 36 nm Pd under the
photothermal assistance of a 785 nm laser has also been investigated. Figure S6(e) and S6(f) show their real-time wave-
length shift responses to H2 concentration, demonstrating that FOTPP tips with thinner Pd films also exhibit excellent
response recovery characteristics and signal-to-noise ratio under photothermal assistance. Figure S6(g) and S6(h) com-
pare the response and recovery times for FOTPP tips with three different Pd film thicknesses under photothermal assis-
tance. All three tips exhibit response times of less than 20 s when the H2 concentration exceeds 1.5%. The response and
recovery times of the FOTPP tips correlate positively with the Pd film thickness, with the FOTPP tip featuring a 28 nm
Pd film demonstrating the shortest response and recovery times of 10 s and 44 s, respectively. This is attributed to two
factors: the higher permeability rate of H2 in thinner Pd films, and the higher surface temperature of the FOTPP struc-
ture under photothermal assistance. Besides, the effect of Pd film thickness on the sensitivity of FOTPP tips under pho-
tothermal assistance is also explored. Figure S6(i) shows the wavelength redshifts of the FOTPP tips with three different
Pd film thicknesses, indicating that sensitivity is negatively related to Pd film thickness, similar to the behavior without
photothermal  assistance.  However,  unlike  the  non-photothermal  case,  the  sensitivity  of  the  50  nm  Pd  film  is  slightly
lower compared to the 36 nm Pd film, which is attributed to the higher hydrogenation ratio of the 36 nm Pd film under
photothermal assistance.
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Fig. S5 | (a) Measured power of 785 nm and 980 nm lasers using the optical power meter. (b)–(d) Wavelength fluctuations in the air for the three

different FOTPP tips, both with and without 785 nm laser photothermal conditions, where σ represents their respective standard deviation.
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Table S1 | Comparison of the sensing performances of fiber-optic H2 sensors reported in recent years.
 

Reference Resonance structure
Sensitivity
(nm/1%)

Response time
(s)

Manufacture method

ref.S1 Fiber grating based on doped Pt/WO3 1.2 25 (2% H2) The sol-gel method + Lithography

ref.S2 Bragg gratings in a helical-core fiber 0.017 101 (2% H2)
Arc discharge method + Fiber fusion +

Lithography
ref.S3 FP structure with a deformable Pd film 0.155 100 (1% H2) Fiber fusion + UV curable adhesive transfer

ref.S4 Fiber grating based TBAOH intercalated WO3 0.16 34 (1% H2) Chemical synthesis + Lithography

ref.S5
Optomechanical nanofilm resonator with a Pd- and

graphene
Nonlinear 120.3 (0.1% H2) Fiber splicing + Film transfer + FIB

ref.S6 FP structure with Au/Pd composite film 0.153 12 (2% H2) Fiber fusion + UV curable adhesive transfer

ref.S7
FP interferometer with a fiber grating

and a nanofilm
~0.064 4.3 (3.5% H2) Fiber fusion + Wet transfer + Lithography

This
work

TPP planar structure ~1.24
11 (2%–3.5%

H2)
Thin film deposition

Note: When multiple sensing performance metrics are reported, the highest sensing performance is used for comparison.

Wei XR et al. Opto-Electron Sci  x, 240029 (2025) https://doi.org/10.29026/oes.2025.240029

240029-S6

 

https://doi.org/10.1016/j.snb.2023.135250
https://doi.org/10.1016/j.snb.2023.135250
https://doi.org/10.29026/oes.2025.240029


core fiber. Opt Laser Technol 174, 110551 (2024).
 Zhang XP, Li XT, Zhang XH et al. Photothermal-assisted hydrogen permeation enhancement. Sens Actuators B Chem 365, 131935 (2022).S3.
 Ye  Z,  Ruan  HB,  Hu  XY  et  al. TBAOH  intercalated  WO3 for  high-performance  optical  fiber  hydrogen  sensor. Int  J  Hydrogen  Energy 47,
28204–28211 (2022).

S4.

 Luo JX, Liu S, Chen PJ et al. Highly sensitive hydrogen sensor based on an optical driven nanofilm resonator. ACS Appl Mater Interfaces
14, 29357–29365 (2022).

S5.

 Zhang XH, Zhang XP, Li XT et al. The nanophotonic machinal cavity and its hydrogen sensing application. Sens Actuators B Chem 367,
132095 (2022).

S6.

 Luo JX, Liu S, Chen PJ et al. Fiber optic hydrogen sensor based on a Fabry–Perot interferometer with a fiber Bragg grating and a nanofilm.
Lab Chip 21, 1752–1758 (2021).

S7.

Wei XR et al. Opto-Electron Sci  x, 240029 (2025) https://doi.org/10.29026/oes.2025.240029

240029-S7

 

https://doi.org/10.1016/j.optlastec.2024.110551
https://doi.org/10.1016/j.snb.2022.131935
https://doi.org/10.1016/j.ijhydene.2022.06.133
https://doi.org/10.1021/acsami.2c04105
https://doi.org/10.1016/j.snb.2022.132095
https://doi.org/10.1039/D1LC00012H
https://doi.org/10.29026/oes.2025.240029

	 Section 1: Refractive indies of materials
	 Section 2: The effects of structural parameters
	 Section 3: Reflection phase of Pd/ PdHx films
	 Section 4: Effect of film thickness on sensing performance
	 Section 5: The stability of FOTPP tips
	 Section 6: Photothermal assistance for different Pd film thicknesses
	References

