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 Section 1: Theoretical background of specklegram
In general, the intensity of each speckle is different, but the total intensity of the speckle pattern must be constant. The
number of modes transmitted in the multimode optical fiber is defined as M, which is determines the number of speck-
lesS1, given by Eq. (S1). 

M =
V2

2
,with V =

2aπ
√
n2
co − n2

cl

λ
. (S1)

a λIn Eq. (S1),  is the core radius of the multimode optical fiber,  is the wavelength of the laser source, and nco and ncl

are the refractive indices of the core and cladding, respectively.

(ΔPm)

By analyzing the speckle pattern, external perturbations applied to the multimode optical fiber affect the propagation
conditions, such as mode-coupling and phase modulation, thus affecting the speckle pattern. When a multimode opti-
cal  fiber  is  subjected  to  external  perturbations,  the  propagation  constant  of  each  mode  changes,  resulting  in  a  phase
translation. Moreover, mode coupling also plays a significant role in the modulation of the speckle field. Similarly, the
multimode optical fiber is subject to external perturbations, and different waveguide modes will  couple,  resulting in a
change in the mode power distribution. The power change of the m-th mode  is expressed by Eq. (S2): 

ΔPm =
∑M−1

n=0
hmn(Pm − Pn) , (S2)

where Pm and Pn are the initial power values of the m-th and n-th modes, respectively and hmn is the coupling coeffi-
cient of the m-th and n-th modes, which is a function of the propagation constant of each mode and the optical fiber
lengthS2.

Notably, the model determines the relationship between speckle pattern changes and measurable perturbations F(t)S3.
In particular, the intensity of each speckle Ii is obtained by integrating the spatial intensity function over the speckle area
as follows: 

Ii = Ai{1+ Bi[cosδi − F (t)φisinδi ]} , (S3)

where Ai is the result of the mode of self-interaction, and F(t) represents the external perturbation to the system. Ai, Bi,
φi, and δi are constant values for any given i. Therefore, by tracking and processing the light intensity of each scattered
spot, important vital sign information can be identified and recorded. 

 Section 2: Different speckle processing methods
In this supplement, several different speckle processing methods present in this work are described in detail. 

A: Normalized inner-product coefficient
In addition to the intensity information of the speckle patterns, the spatial correlation between images is also a signifi-
cant  characterization value.  Francis  et  al.S4 proposed using  the  normalized  intensity  inner-product  coefficient  (NIPC)
for speckle field analysis, as shown below: 

NIPC (i) =

x
Io(x, y)Ii(x, y)dxdy(x

I2o(x, y)dxdy
x

I2i (x, y)dxdy
)1/2 . (S4)

Eq. (S4) combines the speckle position information with intensity information and evaluates the normalized correla-
tion between speckle intensity Ii(x, y) and reference I0(x, y) corresponding to the current state. When I = I0, NIPC = 1,
and the  NIPC method decreases  with  the  deviation of  the  speckle  pattern.  In  this  way,  it  is  possible  to  use  the  NIPC
method to quantify the relative change with high sensitivity. 

B: Zero-mean normalized cross-correlation
To avoid  the  effect  of  the  intensity  fluctuations  of  the  speckle  pattern,  a  modified  processing  method,  ZNCC,  can  be
used to characterize the speckle pattern changes. Compared with the conventional cross-correlation analysis, the ZNCC
method adopts the method of subtracting the local average intensity of the reference and current speckle patterns (see
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Eq. (S5)), thus compensating for the change in intensity of the obtained pictures and making them more robustS5. The
ZNCC method for the i-th frame is given by the following relationship: 

ZNCC (i) =

x
(Io( x, y)− Īo) (Ii( x, y)− Ī)dxdy(x

(Io( x, y)− Īo)
2
(Ii( x, y)− Ī)2dxdy

)1/2 . (S5)

Similar to the NIPC method, where 0<ZNCC<1, I0 can be set to any state (such as frame i−1) to improve the dynam-
ic range. 

C: Image moments/first-order moment
Currently, the image moments obtained using physical concepts have been widely used in the field of computer vision.
The acquired speckle image can be regarded as a grayscale matrix I (x, y), where the mean value expressions of speckle
field intensity with position information in the x and y directions are as follows: 

μx =

∑
x,y
xI(x, y)∑

x,y
I(x, y)

, and μy =

∑
x,y
yI(x, y)∑

x,y
I(x, y)

. (S6)

The expression of the p-order moment is as followsS6: 

μp =

∑
x,y
[(x− μx)

2
+ (y− μy)

2
]
p/2I(x, y)∑

x,y
I(x, y)

. (S7)

The representation value in the form of a p-order moment satisfies the integrity of  various information extractions
during processing. The first-order moment algorithm, p=1, is used here. 

D: Gray-level co-occurrence matrix
HaralickS7 et  al.  proposed one method to describe texture features  using a  gray-level  cooccurrence matrix (GLCM) to
show the spatial distribution of the image and the overall complexity of the image. The matrix is established based on
the spatial relationship of the gray level pairs of the speckle pattern and is defined as the joint probability distribution of
two pixels with the same gray value in the image, as shown in Eq. (S8): 

GLCMθ(i, j) =
∑M

m=1

∑N

n=1

{
1, if I(m, n) = i and I (m+ dcosθ, n+ dcosθ) = j
0, else , (S8)

where the value of the matrix coordinates (i, j) represents the number of times a pixel with intensity i is adjacent to a
pixel with intensity j. Some commonly used feature parameters can be extracted from the GLCM method for the subse-
quent calculations.

Here, the contrast of the GLCM method is used as the speckle statistical eigenvalue, which can be used to describe the
sharpness of the image texture. In an image, a clearer texture correlates to a greater gray difference between the adjacent
pairs of pixels and a greater contrast, which is shown in Eq. (S9)S8: 

CON =
∑M

i=0

∑N

i=0
GLCM(i, j)|i− j|2 . (S9)

 

E: Mutual information
Mutual information (MI) is a common evaluation index of image registration results. Unlike other algorithms for pro-
cessing pixels, the core idea of the MI method is entropy, which represents the information contained in the image. The
information entropy H(X) can be quantified as followsS9: 

H (X) = −
∑

i
p (xi) logp (xi) , (S10)

where p (xi)  is  the  probability  distribution function.  Image information entropy is  a  form of  feature  statistics  that  re-
flects the average amount of information in an image. If there are images A and B, their mutual information values are
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calculated by the following: 

I(A,B) = H(A) +H(B)−H(A,B) , (S11)

where H(A, B) is the joint entropy of A and B, which is calculated using the joint histogram of A and BS10 and can be un-
derstood as the information contained by A and B together (intersection in mathematics). Suppose that the joint distri-
bution functions of A and B are p (x, y) and the edge distribution functions are p (x) and p (y), respectively, then, the
mutual information I (X, Y) can be rewritten as follows: 

I(X,Y) =
∑

x∈X

∑
y∈Y

p(x, y)log p(x, y)
p (x) p (y)

. (S12)

When images A and B are two consecutive speckle images, MI can be used for image registration to compare speckle
variability. 

F: Sum of squared differences
An improved method based on the differential image processing method is proposed, namely, the sum of squared dif-
ferences (SSD). The difference mentioned in the original differential image processing method is squared and summed
to  obtain  the  SSD  method.  By  difference  here,  we  mean  relative  difference,  which  is  the  treatment  of  two  adjacent
frames, that is, k=i−1. 

ISSD (i) =
1

M · N
∑M

x

∑N

y
[Ik( x, y)− Ii(x, y )]2 . (S13)

Similar to the differential image processing method, the SSD method is simple to implement and has low algorithmic
complexity. However, the SSD method typically presents low robustness to non-Gaussian noiseS11.
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