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  Section 1: Generation, reorientation and annihilation of in-plane hyperbolic polaritons in a slab embedded
between two semi-infinite media
In this section, we derive the conditions under which the fundamental mode generates, reorientates and annihilates in a
vdW slab surrounded between two semi-infinite media compared with the configuration embedded in air. The dielec-
tric function of the substrate is negative while that of the superstrate is positive.

ρ = i
√

εz/εy εy i
√

εz/εy = −
√

εz/ |εy|
RB 1.  In this  case, εx > 0, εy < 0, εz > 0.  Similar  to the derivation shown in the main text,  we set φ = 0 and therefore,

. Since  < 0 in RB 1, then  and Eq. (3) can be simplified as follow:
 

tan

(
− kd√

εz/ |εy|

)
=

−
√ εz

|εy|
(ε1 + ε3)

εz
1− ε1ε3

|εy| εz

, (S1)

kd√
εz/ |εy|

> 0
kd√
εz/ |εy|

<
π
2

here , but also  due to the model l = 0 is considered in this section. The left-hand side of Eq.

(S1) is negative. Therefore, for Eq. (S1) to have a solution, the right-hand side must be also negative. Note that ε1 > 0 and
ε3 < 0, namely, the denominator of the fraction in the right-hand side of Eq. (S1) is positive. Thus, for Eq. (S1) to have a
solution, the numerator in the right-hand side of Eq. (S1) must be negative. Hence, we get the condition of propagation
of polaritons along y axis: 

ε1 + ε3 > 0 . (S2)

ϕ =
π
2

ρ = i
√

εz/εx εx
√

εz/εx
ξ =

√
εz/εx

Analogously, let us study the reorientation of PhPs, namely, propagation direction of PhPs rotates from the y axis to x

axis. In this case, we set  and therefore, . Since  > 0 in RB 2,  is positive and pure real. For the
convenience of derivation, we set  ( with ξ also positive and pure real). Thus Eq. (3) can be simplified as fol-
low: 

tan
(
−i

kd
ξ

)
=

iξ (ε1 + ε3)
εz

1+
ε1ε3
εzεx

. (S3)

η ηTaking into account that tan is odd function and tan (i ) = i tanh( ), Eq. (S3) can be rewritten as: 

tanh
(
kd
ξ

)
=

−ξ (ε1 + ε3)
εz

1+
ε1ε3
εzεx

. (S4)

εxεz + ε1ε3 < 0
Note that the left-hand side of Eq. (S4) is positive, for Eq. (S4) have a solution, the right-hand side must be also posit-

ive, namely the sign of the denominator and numerator must be same. There are two cases, one is that if ,
the condition where the polaritons can propagate along the x axis reads: 

ε1 + ε3 > 0 . (S5)
εxεz + ε1ε3 > 0The other is that if  (the superstrate is low-permittivity media, such as air), the condition becomes 

ε1 + ε3 < 0 . (S6)
ε1 + ε3 > 0

ε1 + ε3 > 0 ε1 + ε3 < 0
ε1 + ε3 < 0 εxεz + ε1ε3 < 0

Our  analysis  above  shows  that  the  HPhPs  can  propagate  along  the y axis  in  the  range  in  which ,  while
propagate along the x axis, i.e., reorientation in the range  or  with respective assumptions. For the
other case, i.e.,  and , the fundamental mode annihilates, as listed in Table S1.
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ρ = −
√
|εz|/(εxcos2φ+ εysin2φ)

RB 3. In this case, εx > 0, εy > 0, εz < 0. The isofrequency contour of PhPs in this spectral band is elliptical or closed.
And we know that when the α-MoO3 slab is embedded by air, the fundamental mode is suppressed. However, the slab is
placed on the substate with negative dielectric function, it is possible to excite the fundamental mode. Since εz < 0 in RB
3, then  is real and pure negative, so that Eq. (3) can be simplified,
 

(
kd
ρ

)
=

ρ (ε1 + ε3)
εz

1+
ε1ε3

(εxcos2α+ εysin2α) εz

. (S7)

ρ
εz

ε1 + ε3
1+

ε1ε3
(εxcos2α+ εysin2α) εz

ε1 + ε3 > 0 1+
ε1ε3

(εxcos2α+ εysin2α) εz
< 0 ε1 + ε3 < 0

1+
ε1ε3

(εxcos2α+ εysin2α) εz
> 0

Note that the left-hand side of Eq. (S7) is negative, for Eq. (S7) have a solution, the right-hand side must be also neg-

ative, namely the sign of the denominator and numerator must be different. Note that the sign of  is positive, so the

sign of  must be negative. If  and  or  and

, the fundamental mode (l = 0) is generated. For other cases, the fundamental mode is still

suppressed, as listed in Table S2.

For  other  spectral  regions,  the  conditions  are  derived by  a  similar  treatment  mentioned above.  And the  results  are
shown in Table S3 and S4.

 
Table S1 | The state of fundamental mode of PhPs in RB 1.

 

εx > 0, εy < 0, εz > 0RB 1: 

State of fundamental mode (l= 0) Propagation direction of polariton (l=0) ε1, ε3 ε1 >, ε3 < 0Assumption ( )

y ε1 + ε3 > 0 None

Reorientation x
εxεz + ε1ε3 < 0

ε1 + ε3 < 0
εxεz + ε1ε3 > 0

Annihilation None εxεz + ε1ε3 < 0

 
Table S2 | The state of fundamental mode of PhPs in RB 3.

 

εx > 0, εy > 0, εz < 0RB 3: 

State of fundamental mode(l= 0) ε1, ε3 ε1 >, ε3 < 0Assumption ( )

ε1 + ε3 > 0 1+
ε1ε3(

εxcos2α+ εysin2α
)
εz

> 0

ε1 + ε3 < 0 1+
ε1ε3(

εxcos2α+ εysin2α
)
εz

< 0

Generation
ε1 + ε3 < 0 1+

ε1ε3(
εxcos2α+ εysin2α

)
εz

> 0

ε1 + ε3 > 0 1+
ε1ε3(

εxcos2α+ εysin2α
)
εz

< 0
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  Section 2: The dielectric function of SiC
The dielectric function of SiC can be described by the Lorentz modelS1,S2:
 

ε (ω) = ε∞
(
ω2 − ω2

LO − iγω
ω2 − ω2

TO − iγω

)
, (S8)

where ε∞ = 6.7 is the high-frequency dielectric constant, ωLO = 1.825×1014 rad/s is the longitudinal optical (LO) phonon
frequency, ωTO = 1.494×1014 rad/s is transverse optical (TO) phonon frequency, and γ = 8.996×1011 rad/s is the damp-
ing model.

  Section 3: The dielectric function of Au
The dielectric function of Au can be described by the Drude-Lorentz modelS3: 

ε (ω) = εD (ω) + εL (ω) . (S9)
The Drude term is given by 

 
Table S3 | The state of fundamental mode of PhPs in transition region from RB 1 to RB 2

 

Transition region from RB 1 to RB 2: εx < 0, εy < 0, εz > 0

State of fundamental mode (l = 0) ε1, ε3 Assumption (ε1 >0, ε3 <0)

Annihilation
ε1+ ε3 > 0 1+

ε1ε3(
εxcos2α+ εysin2α

)
εz

< 0

ε1+ ε3 < 0 1+
ε1ε3(

εxcos2α+ εysin2α
)
εz

> 0

ε1+ ε3 > 0 1+
ε1ε3(

εxcos2α+ εysin2α
)
εz

> 0

ε1+ ε3 < 0 1+
ε1ε3(

εxcos2α+ εysin2α
)
εz

< 0

 
Table S4 | The state of fundamental mode of PhPs in transition region from RB 2 to RB 3

 

εx < 0, εy > 0, εz < 0Transition region from RB2 to RB 3: 

State of fundamental mode (l= 0) Propagation direction of polariton(l=0) ε1, ε3 ε1 >, ε3 < 0assumption ( )

Annihilation

ε1 + ε3 < 0
1+

ε1ε3
εxεz

> 0 1+
ε1ε3
εyεz

< 0 and 

ε1 + ε3 > 0
1+

ε1ε3
εxεz

< 0 1+
ε1ε3
εyεz

> 0 and 

x
ε1 + ε3 < 0 1+

ε1ε3
εxεz

< 0

ε1 + ε3 > 0 1+
ε1ε3
εxεz

> 0

Reorientation y
ε1 + ε3 < 0 1+

ε1ε3
εyεz

> 0

ε1 + ε3 > 0 1+
ε1ε3
εyεz

< 0
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Fig. S1 | Real part of permittivity of substrates: SiC (left) and Au (right).
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εD (ω) = ε∞ − γσ
ω (ω+ iγ)

, (S10)

where ε∞ = 0.83409 is  the  high-frequency  dielectric  constant, σ = 3134.5 eV  denotes  the  real  DC  conductivity. γ =

0.02334 eV represents the relaxation rate.

The Lorentz term is described by four pairs of poles
 

εL (ω) =
4∑

k=1

(
iσk

ω− Ωk
+

iσ∗
k

ω+ Ω∗
k

)
, (S11)

σk Ωkwhere  and  are the generalized conductivity and resonant frequency of the kth Lorentz pole, respectively. The para-

meters are listed in Table S5.

  Section 4: The generation and reorientation of PhPs in α-MoO3 /Au heterostructure

  Section 5: The derivation of the Transfer Matrix Method

ψ = 0
π
2

The Transfer Matrix Method for general anisotropic materials is adopted to obtain the reflection matrix in our calcula-
tion.  Note that  there are two angles in our calculation,  azimuth angle Φ and polarizing angle ψ.  The former,  azimuth
angle Φ,  denotes the angle between the plane of incidence and x-z plane as shown in Fig. S1.  When Φ is  not equal to
zero,  the  plane  of  incidence  is  tilled  off  the  x  axis  by  an  angle Φ.  The  latter,  polarizing  angle ψ,  indicates  the  angle

between the direction of polarization of the electric field and the plane of incidence. Consequently,  and  corres-

ponds to the transverse magnetic wave and transverse electric wave, respectively.
We consider  the  general  case,  the  permittivity  of  material  can be  written in  the  form with  reference  to  the xyz co-

ordinate system:
  ( εxx εxy εxz

εyx εyy εyz
εzx εzy εzz

)
. (S12)

When the slab is rotated θ around the z axis, the permittivity tensor in the xyz coordinate system can be expressed as
 

ε = T−1
z εTz , (S13)

where Tz is the coordinate rotational transformation matrix and is the permittivity tensor before rotation. The matrix Tz

is given as
 

 
Table S5 | The parameters for Lorentz poles of gold.

 

kth σx Ωx

1 −0.01743+i0.3059 2.6905−i0.16645

2 1.0349+i1.2919 2.8772−i0.44473

3 1.2274+i2.5605 3.7911−i0.81981

4 9.8+i37.614 4.8532−i13.891

 

940
−100

−50

k

Min ky

Reorientation

Generation

960950 970 990

0

50

100

980
Frequency, ω (cm−1)

1000 1010

Fig. S2 | The minimum of ky calculated by Eq.10. The blue and red shaded regions represent the reorientation and generation of funda-
mental mode of PhPs in α-MoO3 /Au heterostructure, respectively.
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Tz =

( cosθ −sinθ 0
sinθ cosθ 0
0 0 1

)
. (S14)

The electromagnetic fields in the incident medium are written as 

E = S (z) exp (jωt− jkxx− jkyy) , (S15)

and 

H = −j
(
ε0
/
μ0

)1/ 2U (z) exp (jωt− jkxx− jkyy) , (S16)

S = (Sx, Sy, Sz) U = (Ux,Uy,Uz)where  and .
z′Substituting Eqs. (S12), (S15) and (S16) into the Maxwell equations and setting qx = kx / k0 and qy = ky / k0,  = z * k0

we obtain the differential equations 

d
dz′


Sx
Sy
Ux

Uy

 = A


Sx
Sy
Ux

Uy

 , (S17)

where A is the coefficient matrix, which is the form 

A =


iεzz−1εzxqx iεzz−1εzyqx −εzz−1qxqy −1+ εzz−1q2x
iεzz−1εzxqy iεzz−1εzyqy 1− εzz−1q2y εzz−1qxqy

εyzεzz−1εzx − εyx − qxqy εyzεzz−1εzy − εyy + q2x iεyzεzz−1qy iεyzεzz−1qx
εxx − εxzεzz−1εzx − q2y εxy − εxzεzz−1εzy + qxqy −iεxzεzz−1qy iεxzεzz−1qx

 . (S18)

The differential equations in Eq. 6 describe the relation of tangential electromagnetic fields inside the anisotropic me-
dium.

U =
(
Sx Sy Ux Uy

)T |A− QI| = 0Assuming , we have AU = QU. By solving the equation, i.e. , we obtain four
eigenvalues Qm, m=1,2,3,4 of matrix A and responding eigenvectors 

ωm =

 w1,m
w2,m
w3,m
w4,m

 ,m = 1, 2, 3, 4 . (S19)

Therefore, the electromagnetic field inside the medium can be described by the eigenvalues and eigenvectors  
Sx (z)
Sy (z)
Ux (z)
Uy (z)

 =c1

 w1,1
w2,1
w3,1
w4,1

 exp (k0Q1z) + c2

 w1,2
w2,2
w3,2
w4,2

 exp (k0Q2z)

+ c3

 w1,3
w2,3
w3,3
w4,3

 exp (k0Q3z) + c4

 w1,4
w2,4
w3,4
w4,4

 exp (k0Q4z) , (S20)

where cm is the coefficient and can be determined by matching the boundary conditions. Furthermore, we can divide Q
into two categories by value of their real part: positive and negative. The real part of Q is positive, indicating the wave
propagates forward, and vice versa, backward. Without loss of generality, we assume Re (Q3) and Re(Q4) are both posit-
ive while Re(Q1) and Re(Q2) are negative. With these assumptions, we can derive the electromagnetic fields for the in-
finite medium, which are written as  

Sx (z)
Sy (z)
Ux (z)
Uy (z)

 = c1

 w1,1
w2,1
w3,1
w4,1

 exp (k0Q1z) + c2

 w1,2
w2,2
w3,2
w4,2

 exp (k0Q2z) . (S21)

The reflection and transition coefficients can be solved by applying the continuum of the tangential electric and mag-
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netic fields components at the top and bottom interface of the medium, respectively. The boundary conditions depend
on the polarization of incident light. In this paper, only linearly polarized light is considered: s- and p-polarized, so that
we derive the boundary conditions of the transverse electric wave (s wave) and transverse magnetic wave (p wave), re-
spectively.

If the incident wave is the transverse electric wave, the tangential electromagnetic fields at the top air-medium inter-
face (inside air) can be written as
 


S+
x
(0)

S+
y
(0)

U+
x
(0)

U+
y
(0)

 =


kz
k0
cosϕ

kz
k0
sinϕ

−jsinϕ
jcosϕ

+


cosϕ −sinϕ 0 0
sinϕ cosϕ 0 0
0 0 cosϕ −sinϕ
0 0 sinϕ cosϕ




− kz
k0

0
0 1

0 j kz
k0j 0


( rsp

rss
)

. (S22)

From Eq. S21, we obtain the electromagnetic fields at the bottom air-medium interface (inside the medium), given by
  

S−
x
(0)

S−
y
(0)

U−
x
(0)

U−
y
(0)

 = c+1

 w1,1
w2,1
w3,1
w4,1

+ c+2

 w1,2
w2,2
w3,2
w4,2

+ c−1

 w1,3
w2,3
w3,3
w4,3

 exp (−k0Q3t) + c−2

 w1,4
w2,4
w3,4
w4,4

 exp (−k0Q4t) . (S23)

At the top medium-substrate interface (inside the medium), the tangential electric and magnetic fields components
are written as
  

S+
x
(d)

S+
y
(d)

U+
x
(d)

U+
y
(d)

 = c+1

 w1,1
w2,1
w3,1
w4,1

 exp (k0Q1t) + c+2

 w1,2
w2,2
w3,2
w4,2

 exp (k0Q2t) + c−1

 w1,3
w2,3
w3,3
w4,3

+ c−2

 w1,4
w2,4
w3,4
w4,4

 . (S24)

For the transmission, the expression of tangential electromagnetic fields depends on the substrate. Here, we consider
the general case, namely, the substrate medium is also made of anisotropic material. Hence, we use the Eq. (S9) to calcu-
late the electromagnetic fields of the transmission medium, written as
  

S−
x
(d)

S−
y
(d)

U−
x
(d)

U−
y
(d)

 = c+2,1


w2

1,1

w2
2,1

w2
2,1

w2
2,1

+ c+2,2


w2

1,2

w2
2,2

w2
3,2

w2
3,2

 . (S25)

The continuum of the tangential electric and magnetic fields components at the top and bottom interface of the me-
dium asks that:
  

S+
x
(0)

S+
y
(0)

U+
x
(0)

U+
y
(0)

 =


S−
x
(0)

S−
y
(0)

U−
x
(0)

U−
y
(0)

 , (S26)

and
  

S+
x
(d)

S+
y
(d)

U+
x
(d)

U+
y
(d)

 =


S−
x
(d)

S−
y
(d)

U−
x
(d)

U−
y
(d)

 . (S27)

The reflection coefficient, rsp and rss can be solved by combining Eqs. (S22–S27).
For  another  case,  namely,  the  incident  wave is  transverse  magnetic  wave,  the  tangential  electric  and magnetic  field

components are given by
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
S+
x
(0)

S+
y
(0)

U+
x
(0)

U+
y
(0)

 =


−sinϕ
cosϕ

−j
kz
k0
cosϕ

−j
kz
k0
sinϕ

+


cosϕ −sinϕ 0 0
sinϕ cosϕ 0 0
0 0 cosϕ −sinϕ
0 0 sinϕ cosϕ




− kz
k0

0
0 1

0 j
kz
k0j 0


( rpp

rps
)

. (S28)

Similarly, the reflection coefficient, rpp and rps can be solved by combining Eqs. (S23–S28).
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