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  Section 1: Design and fabrication of the binocular meta-lens

  Section 2: Characterization of binocular meta-lens
The depth resolution and accuracy are related to the object depth itself, as shown in Fig. S3(b). The closer the object is to
the meta-lens, the higher the depth resolution and accuracy will be. In the expected distance range to be measured, the
smaller the slope of the data curve is, the higher the spatial resolution is. For example, for a distance below 100 mm, if
the distance changes slightly, the disparity is changed significantly. The yellow curve line is the theoretical value, and the
violet point is the experimental value. The measured results agree well with the theoretical results.

The highest accuracy of our meta-lens system is determined by Eq. (S1). 

acc = fb
ps

(
1

Ooffs − 1
− 1

Ooffs

)
, (S1)

f b
ps Ooffs

where focal length  is 10 mm, baseline  is measured 4.056 mm, the side length of the physical pixel on CMOS sensor
 is 3.45 μm, the principal point offset along the x-axis  is calculated as -396.6 pixels for the experiment demonstra-

tion depth working range. Under this configuration, the highest accuracy can reach 74.5 um.
For the working range of 60 to 450 mm in the experimental demonstration of our work, we did a series of scanning

measurement experiments to evaluate its depth resolution. A textured pattern was attached to the surface of a flat board.
The flat board moved from a distance of 60 mm to 450 mm in 10 mm steps. The distance refers to the separation length
between the  binocular  meta-lens  and the  flat  board.  We captured images  every  time the  flatboard moved.  We did  10
groups of such scanning measurements for statistical analysis. The measurement results, as depicted in Fig. S4, demon-
strate strong agreement between the measured distances and the corresponding ground truth values. Fig. S4(a) show-
cases the excellent alignment between the measured distances and ground truths, with minimal error bars indicating the
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Fig. S1 | Meta-atom design and simulation of the binocular meta-lens. (a) The Schematic diagram of the GaN meta-lens fabrication process.

(b) The phase modulation and transmission intensity of the meta-atom with various nanopillar diameters.
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Fig. S2 | The Schematic diagram of the GaN meta-lens fabrication process.
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absence of crosstalk between measurements. Notably, both the negative error bars in Fig. S4(b) and positive error bars
in Fig. S4(c) generally remain below 1 mm. The presence of two outliers can be attributed primarily to errors within the
measurement system. As a result, we can confidently conclude that a depth resolution of 1 mm can be reliably achieved
within the range of 60 to 450 mm.
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Fig. S3 | Depth calculation analysis based on our binocular meta-lens. (a) Intensity distribution along the cut line that crosses the two image

centers when photographing a large white object. The distance between the red and cyan dashed lines is 0.5 . (b) The function relationship

between disparity and distance with experimental verification. The inserted image is the STD distribution of disparity.
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Fig. S4 | Depth resolution in the working range of 60 to 450 mm. (a) The measured distance with errorbar versus the ground truth distance.

The ideal prediction line, depicted in blue, represents perfect agreement between measurements and ground truth values. The red dots repres-

ent the mean values of the measured distances obtained from ten series of scanning experiments, while the error bars illustrate the standard de-

viation  (STD)  calculated  from  these  ten  groups  of  scanning  measurements.  The  length  of  the  error  is  calculated  from  the  standard  deviation

(STD) of the 10 groups of scanning measurements. The error bars are very small, which are further illustrated in (b) and (c). (b) The length distri-

bution of the negative error bars in relation to the distances. (b) The length distribution of the positive error bars in relation to the distances.
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Due  to  the  limitation  of  our  experimental  room  size,  we  discuss  the  depth  resolution  at  longer  working  distances
through computation. 

depth =
fb

ps ·
∣∣∣D̂+ Uoffs + Ooffs

∣∣∣ , (S2)

Ooffs Odiff < 0 D̂ < |Odiff|In the depth calculation Eq. (S2),  in our system is 0,  and . Therefore, Eq. (S2) could be simpli-
fied as 

depth = − fb

ps ∗
(
D̂+ Ooffs

) , (S3)

Δdepth Δdisp
Δdisp

Δdisp

The depth resolution is related to the object’s depth itself. The closer the object is, the higher the depth resolution of the
system is. The uncertainty of the depth perception  is related to the disparity vibration . The disparity vi-
bration  is determined by the disparity computation algorithm and the texture of the object. Normally, the dispar-
ity vibration  is at the subpixel level because the disparity computation algorithms will take global context charac-
teristics into account. 

Δdepth = − fb
ps

(
1

D̂+ Δdisp+ Ooffs
− 1

D̂+ Ooffs

)
, (S4)

D̂According to Eq. (S3),  could be expressed as 

D̂ = − fb
ps ∗ depth

− Ooffs , (S5)

Putting Eq. (S5) into Eq. (S4), we can derive the depth resolution at different depths, 

Δdepth =
A ∗ depth2

1− A ∗ depth
,whereA =

ps ∗ Δdisp
fb

, (S6)

f b
f b

The  above  discussion  is  based  on  the  object  distance  being  large  (far  to  meta-lens).  In  other  words,  the  distance
between the meta-lens and sensor could be approximated as focal length. In practical applications, the design paramet-
ers of binocular meta-lens, namely the focal length  and baseline , can be adjusted based on the actual working dis-
tance, range, and required accuracy. The focal length  and the baseline  play vital roles in determining the depth sens-
ing accuracy.

The spatial resolution of the lens is usually described by Modulation Transfer Function (MTF). It quantifies the abil-
ity of a lens system to transmit details at different spatial frequencies, i.e., how many image details a lens can retain and
reproduce. The modulation is typically measured by imaging the object of periodic bright and dark line pairs. The spe-
cific calculation of modulation is defined as 

M =
Imax − Imin

Imax + Imin
, (S7)

Imax Iminwhere  is the maximum intensity value in the captured image, representing the bright (white) line;  is the minim-
um intensity value in the captured image, representing the dark (black) line. MTF reflects the image contrast over differ-
ent spatial frequencies. Spatial frequency can be described by the number of line pair periods contained within one mil-
limeter in  the  image.  The  number  of  cycles  contained in  each  millimeter  on the  image  plane  is  called  the  spatial  fre-
quency. Fig. S5(e) demonstrates the measured MTF of our binocular meta-lens. The black dashed line in Fig. S5(e) is the
diffraction-limited transfer function. The diffraction limit represents the spatial resolution of the ideal image. The MTF
will decrease as the spatial resolution increases. The diffraction limit is calculated as shown in Eq. (S8-S10). 

MTF (ξ) = 2
π
(ϕ− cosϕ · sinϕ) , (S8)

 

ϕ = arccos
(
ξ
ξc

)
, (S9)
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ξc =
1

λ · N
, (S10)

ξ ξc λ

N N =
f
D

f = 10 mm

D = 2.6 mm ξc

where  is  the  spatial  frequency,  is  the  limit  frequency  (MTF cut-off),  is  the  working  wavelength  of  the  incident

light,  is  the  f-number  given  by .  For  our  binocular  meta-lens  with  focal  length  and  diameter

,  the  f-number  is  3.846.  Corresponding  limit  spatial  frequency  is  489  cycles/mm  under  the  working
wavelength  of  532  nm.  The  measured  modulation  transfer  function  (MTF)  of  our  meta-lens  (represented  by  the  red
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Fig. S5 | The optical  performance of GaN meta-lens under 532 nm laser illumination. (a)  The measured intensity  profiles of  left  and right

meta-lens along the optical axes (z-axis). (b) The measured focal spot image of the left meta-lens at the focal plane (z = 10.048 mm). (c) The

measured focal spot image of the right meta-lens at the focal plane (z = 10.046 mm). (d) The ideal and measured cross-section intensity profiles
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solid line in Fig. S5(e)) closely approximates the diffraction limit (indicated by the black dashed line in Fig. S5(e)). This
suggests that the spatial resolution of our meta-lens approaches the level of ideal image quality. Our meta-lens exhibits a
notable capability of delivering high image contrast across a wide range of spatial frequencies.

  Section 3: Configuration of the binocular meta-lens camera

  Section 4: Cross-pixel and cross-view interactions
Cross-pixel  interaction,  also  known as  spatial  interaction,  is  the  mutual  interaction or  influence between neighboring
pixels in an image or visual representation. It involves considering the relationships and dependencies between pixels to
capture  contextual  information  and  improve  the  understanding  or  analysis  of  the  image.  Cross-pixel  interactions  are
important for computer vision tasks, such as stereo matching, which strongly relies on image features. The convolution
operation in convolutional neural networks (CNN) is a kind of typical cross-pixel interaction.S1 CNN applies kernels to
local patches of the input image. The convolutional operation can be represented mathematically as follows:
 

C (x, y) = k ∗ I (x, y) =
l∑

i=−l

l∑
j=−l

k (i, j) I (x− i, y− j) , (S11)

C (x, y) (x, y) k (2l+ 1, 2l+ 1)
k (i, j) (i, j) I (x− i, y− j)
(x− i, y− j)

I = {Iij}2l+1
i,j=1 2l+ 1

where  represents the convolution output at the position ,  is the kernel with a dimension of ,
 represents the kernel value at position ,  represents the input image pixel at the relative position

. This operation allows the network to learn spatial patterns and dependencies between neighboring pixels.
However, the receptive field  in CNN is limited by the kernel size S2. Traditional CNNs capture local
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relationships through convolutional kernels, but they may struggle to model long-range dependencies between distant
pixels in an image.

l∑
i=−l

l∑
j=−l

I (x− i, y− j)

I = {Iij}Pi,j=1 P ≫ 2l+ 1

One of the key challenges in stereo matching is dealing with the ill-posed regions caused by the presence of texture-
less or repetitive regions in the images. The convolution operation yields local features from small image patches in loc-

al  neighborhood ,  facilitating  the  establishment  of  initial  feature  maps.  However,  in  scenarios

where textureless or repetitive regions are present, a broader context , where , is necessary, and
thus global features come into play. In stereo matching, the extraction of global features entails capturing dependencies
between pixels that may not be spatially adjacent. To incorporate contextual information and enable global feature ex-
traction, we introduce the self-attention mechanismS3 within the cross-pixel interaction module.

M× N
P = {pi}M×N

i=1 M N pi
Q K V

Self-attention provides a solution to this problem by allowing each pixel to attend to other pixels in the image, which
may  not  be  spatially  neighbored.  In  specific  operation,  we  flattened  the  feature  map  to  a  sequence  of  pixels

, where  and  are the height and width of the feature map. For each pixel , we project it into three es-
sential vectors, Query , Key , and Value , through respective fully connected layers. These linear transformations
from fully connected layers map the original pixel representations into higher-dimensional spaces, allowing the model
to capture complex cross-pixel relationships and potential contextual information. Self-attention enables the cross-pixel
interaction module to compute a weighted sum of the pixel representations, where the weights are determined based on
the relevancy or importance of each pixel to the others. Corresponding attention calculation equationsS3 are 

Attention (Q,K,V) = softmax
(
QKT

√
dk

)
V , (S12)

 

softmax (xi) =
exi∑n
j=1exj

, (S13)

Q K V
√
dk

dk softmax

√
dk softmax

softmax

where  is the Query vector,  is the Key vector,  is the Value vector,  serves as a scale to control the result range,
 is the dimension of the Query vector and Key vector, and  is a normalization function utilized to transform a

vector of  numerical  values into a  vector of  probability  distributions.  The similarity  or  correlation between Query and
Key  is  computed  using  the  inner  product,  yielding  weight  coefficients  for  each  Key  corresponding  to  its  associated
Value, known as cross-pixel attention. The dot products are then scaled by a factor of the square root of the dimension

 to prevent large values. The resulting dot products are passed through a  function to obtain the cross-pixel
attention, which indicates the importance of each pixel for the given Query. This  transformation ensures that
the probability associated with each value is  directly proportional  to its  relative proportion within the original  vector.
The Value is then weighted and aggregated based on cross-pixel attention to obtain enhanced features.  This weighted
sum represents the cross-pixel interaction or the aggregated information from the other pixels. The output of the self-at-
tention mechanism for each pixel is a new representation that combines information from both local and distant pixels,
allowing the model to capture long-range dependencies. Self-attention enables cross-pixel interactions by allowing each
pixel to attend to other pixels in the image. By calculating cross-pixel attention weights based on the relevancy of each
pixel, the model can aggregate information from all pixels to generate a new representation that captures both local and
long-range dependencies.

Pl =
{
pl i
}M×N
i=1 Pr =

{
pri
}M×N
i=1

Ql Kr

In stereo matching, the goal is to determine the correspondence between pixels in a pair of stereo images, which al-
lows for the estimation of disparity information. Therefore, a strong relationship and correspondence exist between the
pixels in the left view, denoted as , and the right view, denoted as . Cross-view interaction
refers to the process of integrating or exchanging information between the left and right stereo views. In binocular-view
analysis,  our cross-view interaction aims to leverage information from stereo viewpoints or modalities to enhance the
overall understanding or interpretation of the scene. Detailed processing steps are similar to the cross-pixel interaction.
The distinction lies in the calculation of cross-view attention, which is based on the Query and Key derived from differ-
ent views. Specifically, the Query of the left feature map  is computed with the Key of the right feature map  through
inner product and vice versa, as described in Eq. (S14) and (S15). 
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Attention_left (Qr,Kl,Vl) = softmax
(
QrKT

l√
dk

)
Vl , (S14)

 

Attention_right (Ql,Kr,Vr) = softmax
(
QlKT

r√
dk

)
Vr , (S15)

Ql Kl Vl Qr Kr Vrwhere , ,  are the three essential vectors, Query, Key, and Value, projected from the left feature map; , ,  are
the three essential vectors, Query, Key, and Value, projected from the right feature map. The inner products of Query
and Key vectors from different views indicate the significance or correspondence of each pixel in the current view re-
garding the given Query from the other view. This cross-view interaction involves feature matching and data fusion, al-
lowing the alignment and combination of information from stereo views. The cross-attention mechanism enhances the
model's ability to capture dependencies between the stereo views, focus on relevant information, and leverage contextu-
al relationships within the visual data.

  Section 5: Performance evaluation of H-Net

 5.1 Network convergence
We trained the H-Net for 800 epochs,  with each epoch consisting of  80 iterations,  resulting in a total  of  64,000 itera-
tions.  We  have  carefully  analyzed  the  training  process  and  plotted  the  training  loss  curve  based  on  the  iterations,  as
shown in Figure S8. The graph clearly shows the trend of the training loss decreasing over time, indicating the conver-
gence of our model during the training process. Starting from an initial training loss of 113, we observed a significant re-
duction in the loss as the training progressed. The training loss steadily decreased and eventually converged to around
0.3.

 5.2 Evaluation metrics

Ddiff(D, D̂) =
{
dispdiffn

}Ntotal

n=1

We use the percentage of the three-pixel-error, the percentage of the one-pixel-error, the end-point error, and runtime
to evaluate the network performance. The percentage of the three-pixel-error displays the percentage of predicted dis-
parity pixels whose absolute difference from the ground-truth disparity value is greater than 3. The absolute difference
map  is specifically calculated by Eq. (S16).
 

dispdiffn =
∣∣∣dn − d̂n

∣∣∣ , (S16)

The percentage of three-pixel-error is further calculated as shown in Eq. (S17).
 

ThreePixelErr
(
D, D̂

)
=

Ndispdiff>3

Ntotal
× 100% , (S17)

D D̂ dispdiffn
n Ntotal D D̂

Ddiff dn n d̂n n Ndispdiff>3

dispdiffn Ndispdiff>1

where  is the ground truth disparity map,  is the predicted disparity map,  is the absolute difference between
ground truth and predicted disparity value for pixel ,  is the total number of pixels in the disparity map  (and ,
and ),  is the ground truth disparity data for pixel , and  is the predicted disparity data for pixel ,  is
the number of pixels whose  is greater than 3. For one-pixel-error, the number of pixels to be counted  is
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dispdiffnthe number of pixels whose  is greater than 1.
End-point error is the mean absolute difference for all pixels between the estimated and ground-truth disparity maps.

The specific calculation is demonstrated in Eq. (S18). 

EndPointErr
(
D, D̂

)
=

1
Ntotal

Ntotal∑
n

(
dn − d̂n

)
, (S18)

 5.3 Performance improvement evaluation
To quantify the improvements of our H-Net, we compare it with the conventional block matching algorithm and two
advanced  neural  network  methods,  PSMNetS4 and  UnimatchS5,  on  the  disparity  computation  accuracy  on  our
homemade test  set  derived from our  meta-lens  system.  In  this  comparison,  PSMNet  and Unimatch all  use  the  open-
source trained weights provided by their authors. Our H-Net and PSMNet were all trained on the KITTI 2012 dataset.
Because the performance of Unimatch trained on KITTI is  relatively poor,  we additionally compared its  performance
based on the Middlebury dataset (its best performance).
 1) Test set preparation

The test  set  on meta-lens  contains  31 stereo image pairs  with 31 ground-truth disparity  maps.  The specific  experi-
mental setup of the test set collection is demonstrated in Fig. S9(a). A textured pattern (as shown in Fig. S9(b)) was at-
tached to the surface of a flat board. The flat board moved from a distance of 150 mm to 450 mm in 10 mm steps. In the
range of 150 to 450 mm, objects can be clearly imaged, minimizing the adverse effects of imaging quality problems such
as  defocusing  on  the  test.  The  distance  refers  to  the  separation  length  between  the  binocular  meta-lens  and  the  flat
board. We captured images every time the flatboard moved. For each image, all the disparity values in its disparity map
are the same because the imaging object is a uniform surface with the same depth. Therefore, we derive 31 stereo (left
and right) image pairs with different depth-disparity pairs.  The ground truth disparity map is derived from the depth
calculation formula Eq. (S19). 

depth =
fb

ps ·
∣∣∣D̂+ Uoffs + Ooffs

∣∣∣ . (S19)

Uoffs Ooffs < 0 D̂ < |Ooffs|In the depth calculation Eq. (S19),  in our system is 0,  and . Therefore, Eq. (S19) could be sim-
plified as Eq. (S20). 

depth = − fb

ps ∗
(
D̂+ Ooffs

) , (S20)

D̂Therefore,  could be expressed as Eq. (S21). 

D̂ = − fb
ps ∗ depth

− Ooffs , (S21)

Through Eq. (S21), we could obtain the computational ground truth disparity data for each depth in the range of 150
to 450 mm, as displayed in Fig. S9(c).  The computational disparity data were further validated by manual calibration.
For each image in the test set, the corresponding feature point pixels are found manually, and their corresponding pixel
displacements are consistent with the calculated ground truth disparity data.
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 2) Comparison analysis
As presented in Table S1, our H-Net demonstrates superior performance compared to other methods across three eval-
uation metrics, including 1PE, 3PE, and EPE, over the entire test dataset. Generally, the 3PE metric is widely employed
to assess the effectiveness of stereo-matching algorithms. We additionally employ the 1PE metric to further evaluate the
algorithm's accuracy and robustness. Our method achieves an outstanding 1PE of 18.839%, surpassing that of other al-
gorithms. This outcome substantiates the significant accuracy improvements brought about by the incorporation of the
H-Module in the calculation of disparities.
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Fig. S9 | Configuration of the test set captured by meta-lens system. (a) The experimental setup for the image derivation of the test set. A

patterned flat board moves from a distance of 150 mm to 450 mm in 10 mm steps. The definition of distance is the length from the plane of the

flat board to the binocular meta-lens. (b) The pattern on the flat board, which is rich in texture. (c) The relationship between ground truth disparity

data and distance according to the Eq. (S21). The blue line represents the function curve. The red dots are the ground truth disparity data corres-

ponding to the images taken at distances ranging from 150 mm to 450 mm.

 
Table S1 | Evaluation of different methods on the test set derived from our meta-lens system. We use the percentage of the three-pixel-er-

ror (3PE), the percentage of the one-pixel-error (1PE), the end-point error (EPE), and runtime for total test set evaluation. The results for the ob-

jects at 250 mm, 350 mm, and 450 mm are specifically listed for item comparison. All the results are tested on the Nvidia GeForce RTX 3090

GPU.
 

Method

Test Set on Meta-Lens

Runtime (s)
250 mm 350 mm 450 mm Total

3PE
(%)

EPE
3PE
(%)

EPE
3PE
(%)

EPE
1PE
(%)

3PE
(%)

EPE

Conventional
Block Matching

0.088 0.690 0.040 0.741 0.0 0.805 36.886 0.181 0.877 ~200

PSMNet 0.0 0.713 0.798 1.135 3.215 2.024 53.564 2.128 1.176 0.144
Unimatch (Middlebury) 0.126 1.269 0.201 1.133 1.392 1.579 75.904 2.902 1.604 0.503

Unimatch (KITTI) 61.951 6.769 51.384 4.894 60.566 6.474 84.622 58.694 6.455 0.503

Ours (H-Net) 0.0 0.630 0.170 0.734 0.0 0.521 18.839 0.062 0.620 0.147
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Regarding runtime, H-Net exhibits comparable performance to the fastest PSMNet, with a mere 0.003 s difference in
execution time.  Considering that the introduction of  the H-Module introduces additional  parameters,  it  is  reasonable
for  our  algorithm  to  exhibit  slightly  slower  performance.  In  contrast,  the  conventional  method  exhibits  the  longest
runtime due to the trial-and-error hyperparameter selection process.

When comparing results for objects captured at distances of 250 mm, 350 mm, and 450 mm, our methods consist-
ently  outperform other  approaches,  except  for  a  slightly  inferior  3PE at  350 mm compared to the conventional  block
matching algorithm. However, the smaller EPE at 350 mm provides evidence of the enhanced robustness of our meth-
od compared to the conventional algorithm.

Figure S10 illustrates a comparative analysis of the disparity map computation results for objects located at distances
of 250 mm, 350 mm, and 450 mm within the test set. Specifically, Fig. S10(a) showcases the original left image captured
by  our  meta-lens. Figure S10(b-f) present  the  corresponding  disparity  maps  obtained  from  the  conventional  block
matching algorithm,  PSMNet,  Unimatch trained on the  Middlebury  dataset,  Unimatch trained on the  KITTI dataset,
and our H-Net. Figure S10(g) represents the ground truth. Certain irregularities can be observed in the 250mm and 350
mm results generated by the conventional algorithm, as shown in Fig. S10(a). With the exception of Unimatch trained
on  the  KITTI  dataset,  as  depicted  in Fig.  10(e),  the  outcomes  from  the  other  methods  closely  align  with  the  ground
truth. Our method provides better results with more uniform disparity distribution, especially in the 450 mm item.

 5.4 Ablation study
We  conducted  the  ablation  experiments  with  and  without  H-Modules  to  evaluate  H-Net.  The  default  backbone  of
PSMNetS4 was the basic architecture. We trained the H-Net and baseline on the stereo dataset KITTI 2012, which con-
tains 194 training stereo image pairs with sparse ground-truth disparities obtained using LiDAR and 195 testing image
pairs without ground-truth disparities. We further divided the whole training data into a training set (160 image pairs)
and a validation set (34 image pairs). As our binocular meta-lens works under a single wavelength, the captured image is
monochromatic. Therefore, the grayscale images of KITTI 2012 were adopted in model training. We use the percentage
of the three-pixel-error and end-point error to evaluate the network performance.

As  listed  in Table S2,  H-Net  outperformed  the  baseline  in  both  two  quantitative  indicators.  In  the  baseline  model
(without the introduced ablation module), the Three Pixel Error is reported as 2.324%, and the End Point Error is 0.150.
These  metrics  reflect  the  performance  of  the  baseline  model  on  the  KITTI  2012  dataset.  After  introducing  the
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Fig. S10 | Disparity map computation result comparison on (a) the 250 mm, 350 mm, and 450 mm items in the test set among (b) Conventional,

(c) PSMNet, (d) Unimatch trained on Middlebury dataset, (e) Unimatch trained on KITTI dataset, (f) Ours methods, and (g) Ground truth. The im-

ages in (a) are the corresponding left images captured by meta-lens.
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H-Module, the Three Pixel Error decreases to 1.258%, and the End Point Error decreases to 0.109. This reduction indic-
ates that the incorporation of the H-Module has a positive impact on the model's performance, resulting in improved
accuracy of the disparity map.

The ablation experiment involving the H-Module demonstrates a significant improvement in the performance of the
disparity estimation task on the KITTI 2012 dataset. The decrease in "Three Pixel Error" and "End Point Error" signifies
enhanced  accuracy  and  precision  of  the  disparity  map.  These  results  validate  the  effectiveness  of  the  H-Module  and
provide proof that the H-Module can capture contextual dependencies and enhance the understanding or analysis of the
image.
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