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  Section 1: Theoretical construction of a partially coherent Laguerre Gaussian beam with cross-phase using
pseudo-mode superposition principle
In the space-frequency domain, the second-order statistical properties of partially coherent sources, propagating along
the z-axis, can be described in terms of their cross-spectral density function. In the source plane (z = 0), the cross-spec-
tral density function of a partially coherent beam with cross phase has the following form1: 

W (r1, r2) = τ0 (r1) τ∗0 (r2) μ (Δr) exp [iu (x1y1 − x2y2)] , (S1)

where ri =(rxi, ryi) (i=1, 2) denotes the radial coordinates. τ0(r) denotes a complex function, defined below. ∆r = r1–r2 is
the difference of two position vectors and μ(∆r) denotes the degree of coherence function of a partially coherent beam.
The last term exp[iu(r1x r1y–r2x r2y)] is the cross-phase structure, where the quantity u is a measure of the strength of the
cross-phase  and  its  sign  property  (positive  or  negative  value)  is  only  used  to  determine  the  rotation  direction  of  the
beam2.  For  mathematical  convenience  and  practicality  of  the  conclusions,  we  consider  using  the  partially  coherent
Laguerre Gaussian (PCLG) beam, which is  the most widely used and easily  generated in the laboratory,  as  the source
beam. In this case, the terms τ0(r) and μ(∆r) are given as follows: 

τ0 (r) =
(√

2r
ω

)l

exp
(
− r2
ω2

)
exp (ilφ) , (S2)

and 

μ (Δr) = exp
[
− (Δr)2

2σ2

]
, (S3)

respectively. φ denotes the azimuthal (angle) coordinates. The quantity l refers to the topological charge. ω and σ denote
the transverse beam width and transverse coherence width, respectively.

Consider a physically realizable PCLG beam with a cross-phase,  whose cross-spectral  density function given by Eq.
(S1) can also be represented by the following integral: 

W (r1, r2) = τ (r1) τ∗ (r2)
w
P (ν) exp [−i2π (ν · r2 − ν · r1)] d2ν , (S4)

with 

τ (r) = τ0 (r) exp (iuxy) , (S5)

and 

P (ν) = 2πσ2exp (−2π2σ2ν2) . (S6)

Next, we employ a pseudo-mode superposition principle3 to construct the PCLG beam with cross-phase by discretiz-
ing Eq. (S4) through Eq. (S6) to yield 

W (r1, r2) =
M∑

m=1

N∑
n=1

P (νmn)τ (νmn, r1) τ∗ (νmn, r2) , (S7)

where vmn =(vmnx, vmny) characterizes the sampling point across the area v. M and N are the numbers of the sampling
points of  the function P(v)  in the horizontal  and vertical  directions,  respectively.  To achieve high precision, M and N
should be large enough. P(vmn) and τ(vmn , r) are the mode weight and discrete pseudo-mode profile, respectively.

To realize the PCLG beam in the laboratory, we must first construct each pseudo-mode, followed by superposing ap-
propriately normalized pseudo-modes. To this end, we can write the electric field of an individual sub-mode as 

Umn (r) =
√
P (νmn)τ (νmn, r) . (S8)

Therefore, through the sub-mode shown in Eq. (S8), the PCLG beam with cross-phase can be constructed by using
the superposition method of Eq. (S7).

  Section 2: Derivation of the electric field of an individual sub-mode propagating through a ABCD optical
system
In  this  section,  we  derive  the  electric  field  of  an  individual  sub-mode  with  a  cross-phase,  propagating  in  a  paraxial
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ABCD optical system. The electric field of an individual sub-mode in the source plane is given by Eq. (S8). Within the
accuracy of paraxial approximation, the propagation of the electric field of the sub-mode beam at the receiver plane in a
paraxial ABCD optical system can be treated by the extended Collins integral: 

Umn (ρ) =
(
− i
λB

)
× exp (ikz)×

x
S1

Umn (r) · exp
{

ik
2B

[
A
(
ρx

2 + ρy
2
)
+ D (rx2 + ry2)− 2(ρxrx + ρyry)

]}
drxdry , (S9)

where A, B and D are the elements of the transfer matrix of an optical system, k is the wavenumber, ρ=(ρx, ρy) denotes
the arbitrary position vector in the receiver plane.

Then, on substituting from Eq. (S8) into Eq. (S9), after tedious but straightforward integrating, we obtain the expres-
sion for the electric field of an individual sub-mode in the receiver plane 

Umn (ρ) =
√
P (νmn)

π
λB

exp (ikz) (−1)j1+j2+1 · i2j2+1 · 22j2−
n+3l
2

(
2
√
2

ω

)n−2j2 1√
G1

(
1√
G2

)l−k0−2j1−2j2+1

×
l∑

n=0

l−n∑
k0=0

[(l−n−k0)/2]∑
j1=0

[n/2]∑
j2=0

(
l
n

)( l− n
k0

)
(l− n− k0)!

j1! (l− n− k0 − 2j1)!
n!

j2! (n− 2j2)!

(
1− 2

G1ω2

) l−n
2
(

u√
G1

2ω2 − 2G1

)l−n−k0−2j1

×exp
[
ikD
2B

(
ρx

2 + ρy
2
)]

exp

[
−
(
kρx − 2πvmnxB

2
√
G1B

)2
]
exp

[(
1

2
√
G2

(
−
ikρy
B

+ i2πvmny +
(
kρx − 2πvmnxB

)
u

2G1B

))2]

×Hk0

[
−
(
ikρx − i2πvmnxB

)
B
√
G1

2ω2 − 2G1

]
H(l−k0−2j1−2j2)

[
i

2
√
G2

(
−
ikρy
B

+ i2πvmny +
(
kρx − 2πvmnxB

)
u

2G1B

)]
,

(S10)
with 

G1 =
1
ω2 −

ikA
2B

,G2 = G1 +
u2

4G1
. (S11)

Imn (ρ) = |Umn (ρ)|2
Based on Eq. (S10), we can numerically study the evolution of individual sub-mode and the PCLG beam with cross-

phase, respectively. The intensity of individual sub-mode is .  The average intensity and cross-spec-
tral density of a PCLG beam with cross-phase on propagation are obtained as: 

I (ρ) = W (ρ, ρ) =
M∑

m=1

N∑
n=1

|Umn (ρ)|2 , (S12)

and 

W (ρ1, ρ2) =
M∑

m=1

N∑
n=1

|Umn (ρ1)U
∗
mn (ρ2)| . (S13)

Then, we normalize the cross-spectral density function and obtain the degree of coherence function: 

μ (ρ1, ρ2) = W (ρ1, ρ2)
/√

W (ρ1, ρ1)W (ρ2, ρ2) . (S14)
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