Supplementary information 2022. Vol. 1. No. 1 DOI: 10.29026/oes.2022.210010 ## Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials Tun Cao^{1†*}, Meng Lian^{1†}, Xieyu Chen^{2†}, Libang Mao^{1†}, Kuan Liu¹, Jingyuan Jia¹, Ying Su¹, Haonan Ren¹, Shoujun Zhang², Yihan Xu², Jiajia Chen², Zhen Tian^{2*} and Dongming Guo^{3*} ¹School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024; ²Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072; ³School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024. Supplementary information for this paper is available at https://doi.org/10.29026/oes.2022.210010 [†]These authors contributed equally to this work. ^{&#}x27;Correspondence: T Cao, E-mail: caotun1806@dlut.edu.cn; Z Tian, E-mail: tianzhen@tju.edu.cn; DM Guo, E-mail: guodm@dlut.edu.cn Fig. S1 | The schematic of fabrication processing of the metamaterial. Fig. S2 | Schematic of electrically tuned chalcogenide metamaterials residing on a metallic heater.