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 Section 1: Sample fabrication
Ultraviolet  lithography and inductively coupled plasma (ICP) etching are used to process the samplesS1.  We use stan-
dard photolithography to form a 6.8 μm thick patterned positive photoresist (AZ4620) as a mask on a 500 μm thick sili-
con wafer with a diameter of 4 inch. Then we use ICP etching technology (STS MULTIPLEX ASE-HRM ICP ETCHER,
United Kingdom) to etch the sample, and finally the remaining photoresist is washed away to get the final sample. The
etching depth is about 200 μm, and the remaining 300 μm thick silicon layer is used as the substrate. The six main steps
are shown in Fig. S1. 

 Section 2: Polarization resolved terahertz time-domain spectroscopy
Since it is difficult to measure two orthogonal polarization components simultaneously using a conventional terahertz
time-domain spectroscopy (TDS) system, we need four metal wire grid polarizers to form a polarization resolved tera-
hertz time-domain spectroscopy (PTDS)S2. As shown in Fig. 3(b) of the manuscript, during the measurement, the polar-
ization directions of P1 and P4 are kept consistent with the polarization of the transmitting and receiving antennas re-
spectively, and then P2 and P3 are rotated in turn, while taking the ±45° as the new reference coordinate axes. After the
four transmission coefficient components are obtained, the circular polarizations are calculated according to Eq. (2) in
the manuscript. The specific theoretical analysis is as follows.

Assuming that the terahertz waves emitted and received by the photoconductive antenna are horizontally polarized,
and the x-axis of the initial  Cartesian coordinate system is consistent with the polarization direction. The variation of
terahertz signal before and after passing through the sample can be described by Jones matrix as:  (
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In  order  to  complete  polarization resolved terahertz  spectral  measurements  without  adjusting  the  photoconductive
antenna,  we  rotate  the  coordinate  system  by  45  degrees  clockwise,  and  the  transmission  matrix T should  be  trans-
formed into , 
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where θ=45°. So, in the new coordinate system, the relationship between the incident electric field and the transmitted
electric field is  (
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The transformation of coordinate systems can be achieved in measurement through the operation of rotating polariz-
ers mentioned earlier. It should be noted that after the polarizer is rotated, the detection antenna can still only perceive
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Fig. S1 | Detailed steps for sample preparation.
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the vertical electric field component. Therefore, the recorded electric field has the following relationship with the actual
electric field (in the new coordinate system):  (
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The superscript  of  the  electric  field  on the  right  side  of  the  equation indicates  that  P2 has  been rotated  by  45°  and
−45°, respectively. When P3 is also rotated by 45° and −45° respectively, we can obtain four recording signals,  (
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So we can derive the calculation formula for the four linearly polarized transmission coefficients in the new coordi-
nate system,  
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ty /Ẽ+45◦
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Finally, the original transmission matrix can be obtained through the inverse transformation of the coordinate system 

T =
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where θ=−45°.
Based on the results mentioned above, the transmission matrix of the circular polarization basis and circular dichro-

ism can be calculated. 

 Section 3: Beam profile measurement of the focused terahertz wave
To  measure  the  electric  field  amplitude  and  phase  of  transmitted  terahertz  beams,  a  near-field  imaging  system  (Ter-
aCube Scientific M2) was employed, as shown in Fig. S2. The femtosecond laser source in the system is 780 nm with 100
fs pulse width and 80 MHz repetition rate. In the experiment, a linearly polarized terahertz beam was generated from a
photoconductive antenna and collimated by a TPX terahertz lens. The incident terahertz wave was then illuminated ver-
tically from the substrate side of the fabricated all-silicon sample to produce a target spot on a predesigned focal plane.
The sample was scanned using a detection module equipped with a microprobe and the electric field distribution on the
focal plane was recorded pixel-by-pixel, which was approximately 14 mm away from the sample. Subsequently, the dif-
ferent polarization components were recorded by changing the microprobes.  Finally,  calculations were performed us-
ing standard code to yield the desired electric field distribution.
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Fig. S2 | Optical path for measuring focused terahertz beam.
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