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Section 1: Model implementation 

Section 1.1: Material refractive index
In our material database, we selected 18 different materials (Fig. 1(d)) that are widely accessible in many micro/nanofab-
rication facilities. We experimentally deposited a single layer on silicon substrate and measured their refractive index us-
ing ellipsometer. Their refractive index is given in Fig. S1. 

Section 1.2: Dataset generation
The  measured  refractive  index  is  used  for  simulation  during  dataset  generation.  The  training  dataset  and  validation
dataset  consist  of  10M and 1M randomly generated samples  (we use glass  substrate),  respectively.  Here,  the random-
ness comes from three aspects: material, thickness and the total number of layers. Materials are uniformly sampled from
material database and thickness is also uniformly sampled from 10 nm to 500 nm with 10 nm discretization. In addition,
we make sure that nearby two layers have different materials.  When sampling the total  number of layers,  considering
that  the  number  of  possible  structures  increases  exponentially  as  the  total  number  of  layers  increases,  we  sample  the
number of layers with increasing ratios. We plot the histogram of our generated samples based on the number of layers
in Fig. S2(a). Figure S2(b) gives a histogram of the total number of possible structures.
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Fig. S1 | Measured refractive index real part (a) and imaginary part (b) for 18 different materials considered.
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Fig. S2 | (a) Histogram of number of generated training data w.r.t. number of layers. (b) Histogram of number of allowable structures w.r.t. num-

ber of layers, which follows an exponential  distribution. For the multilayer structure with twenty layers, the total number of allowable structures

reaches 1059.
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After the structure is sampled, transfer matrix methodsS1 (TMM) is used to simulated the reflection and transmission
spectrum. It took ~1200 h to simulate all 10 M structures on a single CPU and can be faster with parallel computing. It
also took ~12 GB to store the generated dataset. We give four examples of generated structures and simulated spectra in
Fig. S3.
 

Section 1.3: Model architecture and training details
We summarize the hyperparameters used in OptoGPT in Table S1. We use KL divergence as our training loss, with the
goal of recovering the input structures from the probability distribution. During training, we use Adam optimizer and
warmup procedure. The residual dropout and label smoothing are also used to provide regularization during training.
The training loss curve is given in Fig. S4. 
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Fig. S3 | Four examples in the training dataset. Structures are given in (a) and their transmission and reflection spectrum are given in (b, e).
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Section 1.4: Visualization of multi-head self-attention
When human reads, usually we do not try to memorize all the words in a sentence. Instead, we selectively focus on these
words that are important to form a basic understanding of this sentence. Self-attention is a mechanism that relates each
single word with all the other words inside this sentence and selectively focus on several words that are important, simi-
lar to how human reads. Multi-head attention allows the model to focus on different aspects.  To have a better under-
standing, in Fig. S5, we give a visualization of the attention map for the following structure:

['SiO2_240', 'Ta2O5_90', 'SiO2_130', 'TiO2_80', 'MgF2_140', 'HfO2_80', 'SiO2_130', 'Ta2O5_100', 'SiO2_130',
'Ta2O5_480', 'SiO2_160', 'Ta2O5_490']

This structure has twelve layers with alternating high-low refractive index profile, similar to the distributed brag re-
flector (DBR). The attention map is a matrix where each row corresponds to how much attention a single token should
be put to other tokens in this sequence. The number of ‘000’ corresponds to the token of ‘BOS’ (stands for beginning of
sequence).  It  is  a  common  token  placed  in  front  of  the  sequence  of  structure  tokens  and  used  in  many  other  trans-
former modelsS2. The number of ‘013’ corresponds to the token of ‘EOS’ (stands for end of sequence). Other numbers in
front of each token specify its relative position in this multilayer structure. Usually, it is difficult to understand the phys-
ical meaning of each attention map because these machine learning models are black-box. Therefore, we only show at-
tention maps of head 1, head 2 and head 4 in the first decoder block as they may have some meanings. We notice that
attention map for head 2 and head 4 focus more in the layers right below and right above, while head 1 focuses more on
the long-term alternating relationship (corresponding to the alternating high-low refractive index profile). 

 

Table S1 | Hyperparameters of our OptoGPT.
 

Hyperparameters Values

Spectrum dimension 142

Spectrum embedding Fully connected layers: 142-142-1024

Dimension of hidden representation 1024

Number of decoder blocks (N) 6

Number of attention heads (H) 8

Context Length (K) 22

Dropout rate (p) 0.1

Batch size 1000

Label smoothing (εls) 0.1

Learning rate (lr) 0.0001

Learning rate decay Linear warmup and cosine decay (see code for details)

Optimizer Adam optimizer (β1 = 0.9, β2 = 0.98,ε = 10-9)

Size of model 58 M

Dataset size 10 M

Training epochs ~200

Training time ~2 week
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Fig. S4 | Training and validation loss curve. The validation loss is lower than training loss. This is because we are using regularization
techniques (e.g., dropout) during training process.
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Section 2: Model performance 

Section 2.1: Structure finetuning details

ΔE

Since we discretize the thickness by 10 nm gap from 10 nm to 500 nm in our training data, the designed structures from
our model will also have such discretization. 10 nm gap can be useful for some fabrication tools which cannot guarantee
accurate deposition thickness, but may not be sufficient for other tools with high precision deposition, e.g., vacuum de-
position. Therefore, we run a thickness finetuning (see Fig. S6(a)) by only optimizing the thickness with the goal of min-
imizing the Mean Absolute Error (MAE) of spectrum. For the structural color application, we minimize the visual color
difference (denoted as , see Section 2.3). We use the Limited-memory BFGS methodS3 to finetune the thickness and
use the designed thickness from our model as the optimization starting point.

In Fig. S6(b, c), we give one example of finetuning the structure 2 in Fig. 4(d) in the main text. The finetuning pro-
cess (see solid line in Fig. S6(b)) is  fast  and quickly converges in less  than 20 iterations because our model  provides a
good starting point for optimization. As a comparison, we run the same optimization algorithm but starting from some
random  points.  We  simplify  the  optimization  task  by  using  the  same  materials  in  structure  2  and  only  optimize  the
thickness. We run the optimization five times by starting from five different random points. Dashed lines in Fig. S6(b)
show results of convergence and spectrum performance at each iteration. We can find that none of five optimizations
show better spectrum performance than our finetuning.

Considering  that  Limited-memory  BFGS  method  is  a  local  optimization  which  depends  on  the  starting  points,  we
compare our finetuning with the particle swarm optimization (PSO), which is an advanced global optimization method.
We also run five different  optimizations starting from some random initial  points.  On average,  it  takes PSO 60 itera-
tions to reach the same performance as our designed structure 3. None of these optimizations exceed the performance
of finetuning. In other words, the design performance of our model before finetuning is equivalent to running the opti-
mization algorithms for 60 iterations, which saves a lot of time and effort. 
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Fig. S5 | Multi-head  attention  map  for  the  structure  ['SiO2_240', 'Ta2O5_90', 'SiO2_130', 'TiO2_80', 'MgF2_140', 'HfO2_80', 'SiO2_130',
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Section 2.2: More examples of inverse design in the validation dataset
In Fig. S7, we give two more inverse design examples to visualize the design performance in the validation dataset. Simi-
lar to Fig. 4(d) in the main text, we show the target structure that corresponds to the designed spectrum in the valida-
tion dataset, the closest structure in the training dataset, five designed structures and the finetuned structure. The MAE
in the last column denotes the spectrum performance.
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Section 2.3: Designing structural color

ΔE ΔE
ΔE ΔE < 2

Because our target spectrum (400 nm to 1100 nm) covers both visible region and near infrared region, it is possible to
use our model to design structural color. Here, we select LAB as our color space. There are many other color spaces in-
cluding RGB, xyY, XYZ. We do not use those color spaces because LAB space is uniform, which makes it convenient to
define the color differenceS4.  We use the  to determine the performance of  color accuracy.  A lower  value indi-
cates greater color accuracy, while a higher  value means a significant color mismatch. Usually, when , it is vi-
sually difficult for human to distinguish the color difference. During inverse design, we first convert the LAB color to
spectrum from 400 nm to 1100 nm using a proposed algorithm, then we modify this spectrum to fit for our model’s de-
sign input. This method can be used to design for both transmissive and reflective structural color. 

Section 2.3.1: Convert spectrum to color
S (λ)For a given spectrum , we first calculate the CIE 1931 XYZ color using: 

X =
1
K

w λ2

λ1
x̄ (λ) I (λ) S (λ) dλ

Y =
1
K

w λ2

λ1
ȳ (λ) I (λ) S (λ) dλ

 

Z =
1
K

w λ2

λ1
z̄ (λ) I (λ) S (λ) dλ

x̄ (λ) , ȳ (λ) , z̄ (λ) I (λ)
K [λ1, λ2]

where are the color matching functions (shown in Fig. S8),  is the relative spectral power distribu-
tion of the illuminating light source (we use ‘D65’).  is a normalizing factor. The  is the visible spectrum range
and we use 400 nm – 800 nm in our case. LAB is then calculated by doing a conversion from XYZ. 

Section 2.3.2: Convert color to spectrum using optimization
LABtarget = [L, a, b]

S = [sλ1 , sλ2 , . . . , sλ71 ] λ1, λ2, . . . , λ71 = 400 nm, 410 nm, . . . , 1100 nm
S

S

Consider a three-dimensional color target , we want to convert the color to the 71-dimensional spec-
trum , where . We treat this as an optimization task
with two different goals. The first goal is to make the color of the spectrum  as close to the target color as possible. The
second goal  is  to make the spectrum smooth enough since abrupt jumps in spectrum is  not physical.  We use particle
swarm optimization (PSO) to convert color to spectrum  by minimizing the loss: 

Loss (S) = ΔE (LABtarget, LABS) + α ∗
∑71

i=1

(
d2S
d2λi

)
,

LABS

α
α

α

where  is the color of the converted spectrum. Notice that when calculating color, we only use the portion of visi-
ble  wavelength from 400 nm to 800 nm. The second term is  the second order derivative of  spectrum w.r.t.  the wave-
length from 400 nm to 1100 nm, which quantifies the smoothness of spectrum.  is a factor that balances the loss of col-
or accuracy and smoothness. In Fig. S9, we give one example of converting yellow color to spectrum under different 
factors. Notice that the converted spectrum is less smooth when  is smaller. 
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Section 2.3.3: More examples of structural color inverse design

[70,−80, 0]
In Fig. S10 (a–d), we detailed two more examples of designing the green structural color for both reflective type (a, b)
and transmissive type (c, d). The LAB of the green color target is . First, we obtain the converted spectrum
from  the  LAB  value  using  the  optimization  algorithm  described  above.  Since  our  model  takes  in  both  reflection  and
transmission spectrum, we add extra modification to this converted spectrum. In detail,  when designing the reflective
type, we set the reflection spectrum to be the converted spectrum and set transmission spectrum to be 0 (see (a)). When
designing the transmissive type, we set transmission to be the converted spectrum and set the reflection spectrum to be
one minus the transmission spectrum (see (c)). Finally, these modified reflection and transmission spectrum are feed to
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our model for inverse design. We also compare the spectrum performance and color difference in (a) and (c). The de-
tailed  structures  of  the  closest  in  the  dataset,  the  designed structure  and finetuned structure  are  given in  (b)  and (d).
More design examples given in (e–f) and we only give the color visualization results for simplicity. 

Section 2.4: More examples of designing absorbers
Figure S11 gives more examples of designing perfect absorber in 400–1100 nm. To design a perfect absorber, we set both
transmission and reflection in the target spectrum to be zero. This is because absorption = 100% – transmission – reflec-
tion, and a perfect absorber requires 100% absorption. We show five different designs in (c) as well as their absorption
spectrum in (a-b). Specifically, structure 1 follows the material arrangement reported in Ref.S5 while structure 2 follows
the material arrangement considered in Ref.S6. Their spectra are given in (a). This is done by adding a design constraint
on the material arrangement in the first several layers, similar to the constraint 4 in Fig. 6 in the main text. In ref.S5, the
designed structure for the perfect absorber is MgF2 95.6 nm/SiO2 14.7 nm/Al2O3 76.5 nm/TiO2 48.0 nm/Si 14.2 nm/Ge
12.0 nm/Ti. In ref.S6, the designed structure for the perfect absorber is MgF2 118 nm/TiO2 56 nm/Si 32 nm/Ge 33 nm/Cr
200 nm/Glass. Even though that 1) materials we are using may have different refractive index, 2) we do not have Ti or
Cr in our material and 3) we only use spectrum inside 400–1100 nm, our model can still give similar thickness design
for these layers with common materials. In (b), the design 3–5 actually exhibit better absorption performance (~98% ab-
sorption on average) than design 1 and 2 in 400–1100 nm. A future work with a close examination into these designs
can possibly reveal how to design a perfect absorber.

In addition, our model can be used to design for arbitrary absorbers. The target arbitrary absorption spectrum is ran-
domly  selected  from  the  validation  dataset,  by  doing  a  calculation  of  absorption  =  100% - transmission – reflection.
When converting this arbitrary absorption spectrum to our model input, we set the target transmission spectrum to be
zero and target reflection = 100% – target absorption. We give two examples of arbitrary absorber. Their spectra are il-
lustrated in Fig. S12(a–b), and the designed and finetuned structures are given in Fig. S12(c–d). 

 

100

80

A-Target
A-Closest
A-Design 1
A-Design 2

A-Target
A-Closest
A-Design 3
A-Design 4
A-Design 5

60

40

20

Ef
fic

ie
nc

y 
(%

)

0
400 500 600 700

Wavelength (nm)
800 900 1000 1100

Structure for “Absorbers” MAE

100

80

60

40

20

Ef
fic

ie
nc

y 
(%

)

0
400 500 600 700

Wavelength (nm)
800 900 1000 1100

Perfect absorber Perfect absorbera

c

b

Fig. S11 | Examples of inverse design perfect absorbers in 400–1100 nm. We give five more designs, with spectrum comparisons shown in

(a–b) and structures shown in (c).
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Section 2.5: More examples of designing filters
Examples are given for band-notch filters centered at different wavelength. 
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Fig. S12 | Two examples of design arbitrary absorbers in 400−1100 nm. The spectrum performance is given in (a−b), and structures are giv-

en in (c−d), respectively.
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Fig. S13 | More examples of inverse design band-notch filters at 700 nm (a) and 900 nm (b) and structure are given in (c−d), respectively.
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Section 2.6: More examples of designing broadband reflector
Examples are given for broadband reflections centered at different wavelength and different number of bands. 
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Fig. S14 | More examples of inverse design broadband reflector. We give the details for the task “High Reflection in 600−900 nm”, “Double

High Reflection in 500−600 nm, 800−1000 nm” here. Their structures are given in (c−d), respectively.
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Section 3: Design flexibility 

Section 3.1: Results of thickness finetuning when designing FP resonator
Finetuned results  for  the  designed structures  in Fig. 6 in  main  text  are  given here.  The  peak  position of  the  designed
structures  may  deviate  from the  design  target  due  to  discretized  thickens.  The  thickness  finetuning  can  remove  such
limitations and make the inverse design more accurate. 
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Fig. S15 | Detailed results of finetuning designs with constraints in Fig. 6 in the main text. (a–d) shows the spectrum of finetuned struc-

tures with constraints 1–4, respectively. (e) shows the detailed structures and spectrum performance.
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Section 3.2: Another example of design flexibility: designing structural color
We use another example of designing a transmissive-type orange structural color to demonstrate the design flexibility.
Details of designed structures and finetuned structures are also given. 
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Fig. S16 | Another example of design flexibility for transmissive orange structural color. Here we consider four different constraints “1: Fix

the first layer to be 70 nm ZnO”, “2: Limit the first layer in [10, 200] nm”, “3: Only use SiO2 and TiO2”, “4: Specify the material at each layer to be

TiO2/MgF2/ZnSe/SiO2/ZnSe and design the thickness only”. The results of color impression are given in (a). The designed structures are given in

(b).
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Section 4: Generalization ability 

Section 4.1: Finetuning model for different angles and polarization using smaller training set
The inverse design performance of pretrained model and finetuned model on the angled-resolved spectrum with differ-
ent polarizations are compared here. Since the pretrained model is trained on 0° incident spectrum, it does not perform
well when designing for angled spectrum. The distribution of MAE moves to the right side as the incident angle of de-
signed spectrum increases. 
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Fig. S17 | Histogram of inverse design performance on different angles (10°–80°) and polarization states (s-pol, p-pol, and un-pol) for
pretrained model and finetuned model. The pretrained model is the original model trained on a large 10M dataset with normal incident spec-

trum, while the finetuned model is finetuned on a smaller 1M dataset with specified angle and polarization state. Based on the high MAE, we can

see that the pretrained model is bad for angled/polarized spectrum inverse design. However, after finetuning, they exhibit much better design per-

formance, which can be verified by the small MAE.
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Section 4.2: More examples for mixed sampling
Examples are given for simultaneously designing multiple spectrums at different incident angles and polarization states. 
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Fig. S18 | Two more examples for designing structures that can satisfy multiple angles and polarization states simultaneously. (a) De-

signing for  both  0°  s-polarized spectrum and 30°  s-polarized spectrum.  (b)  Designing for  both  0°  un-polarized spectrum and 50°  un-polarized

spectrum.
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Section 5: More discussions 

Section 5.1: Data and code availability
We believe  our  model  can facilitate  researchers  and engineers  working  in  multilayer  thin  structures  in  many aspects.
Upon  publication,  we  will  post  our  training  data  for  others  to  explore  other  designs  of  multilayer  structures.  Due  to
patent filing, we are restricted to share our code at this point; but could become available at a later time. 

Section 5.2: Limitations of our model

107 1059)

As mentioned in the discussion in the main text, our model is trained on a limited dataset, where the spectrum region
and types,  material,  thickness,  number of layers are restricted. Therefore, at this moment, there are some applications
that our model cannot deal with. For example, designing for radiative cooling (requires spectrum coverage to 2 µm). In
addition, our dataset ( ) is also small compared to the enormous size of possible structure ( . Therefore, we can-
not expect the model can always perform well when designing for different spectra. In Fig. S17, we give one such exam-
ple  for  designing “band-pass  filter  at  750  nm” where  our  model  completely  fails.  The  big  difference  of  the  spectrum
from the closest structure in the training dataset confirms that our training dataset does not contain sufficient data for
our model to learn. 
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Fig. S19 | One example when our model fails to give a structure for the “band-pass filter in 750 nm”. The target spectrum requires a trans-

mission at 750 nm while the designed structure does not have any transmission. The closest structure in the dataset also does not have trans-

mission, which means this type of spectrum target is outside of our training dataset. This is because our training dataset is still small (107) com-

pared to the total possible structures (1059).
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Section 5.3: Comparison of our model with existing methods
In Table S2, we compare our model with existing methods from five aspects:

1. Versatile for different types of structures: design the total number of layers, material arrangements and thickness si-
multaneously.

2. Versatile for design targets: quickly adapt to different design targets without restarting the design process.
3. Generalized to angled incidence and polarizations: to suit for a wider range of application situations with different

angled incidence and polarization states.
4. Multiple design: In principle, we can always get different designs if we restart the optimization process or retrain

the model from different random points. It is desirable that the method can intuitively give multiple designs without do-
ing so.

5. Flexible design: to incorporate different design constraints without restarting the optimization process or retrain-
ing the model.

From the table, we can see that our model demonstrates promising performance outperforming existing methods.

 

Table S2 | Comparison of our method with existing methods. [a]: GLOnet is based on optimization and OML-PPO is based on reinforce-
ment learning so they do not need training data. [b]: The model size (number of parameter) is not provided in the original paper or code
repository, so we estimate it based on their model architecture.
 

Methods ref.
Model

size (M)
Training

dataset size (M)
Demonstrated
design targets

Versatile for
structures?

Versatile for
design targets?

Generalized to
angles and pol?

Multiple
design?

Flexible
design?

PSO ref.S7 --- --- Filters No No No No No

Genetic algorith ref.S8 --- --- Antireflection coatings No No No No No

Needle optimization ref.S9 --- --- Optical coatings No No No No No

Memetic optimization ref.S10 --- --- Radiative cooling Yes No No No No

GLOnet ref.S11,S12 ~0.2 ---[a] Optical transfer function Yes No No No No

OML-PPO ref.S13 ~0.5 ---[a] Absorber Yes No No Yes No

Tandem network ref.S14 ~0.2[b] ~0.5 Transmission No Yes No No No

GAN ref.S15 ~1.1[b] ~0.05 Structural color No Yes No Yes No

MDN ref.S16,S17 ~3.6[b] ~0.1 Transmission No Yes No Yes No

MST ref.S5 ~14 ~0.14 Absorber No Yes No No No

OptoGPT (Ours) ~56 ~10 Multiple Yes Yes Yes Yes Yes
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