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  Section 1: Ray theory for structured electron vortex beam (EVB)
φ = lf (θ)In this work, considering a plane electron wave passing through the phase mask with a phase distribution  and

a radius R,  the generalized Snell’s law indicates that the transverse wave vector k and its differentiation dk are directly
related to the phase gradient along the azimuth direction as follows,  

k = dφ
rdθ

=
l
r
f ′ (θ)

dk = dϕ
r2dθ

=
l
r2

f ′ (θ) dr
. (S1)

r · dr · dθ
k · dk · dϕ ϕ = θ+ π/2

For electron ray occupying an area  in real space are diffracted to a region in Fourier space, the correspond-
ing area is given by , here  is the azimuth angle in Fourier space. Ignoring reflection and absorp-
tion, and considering the energy conservation law, we can obtain the following relationship, 

I · k · dk · dφ = I0 · r · dr · dθ , (S2)

I0where I and  are the intensity distributions of diffracted and incident beam, respectively. Equations (S1) and (S2) can
be further derived as, 

I = I0(lf ′( θ ))2/k4 , (S3)

kmin = lf ′ (θ) /R k < kmin

k > kmin k4

kmin

= arcsin
(
kmin

k0

)
∝ lf ′ (θ) k0

f ′ (θ)

According to the Eq. (S1), a finite beam radius R implies that the wave vector exists with a minimum boundary, i.e.
. For a given azimuth angle, no electrons are diffracted into the range of , so it would appear as a

void region.  In the range of , Eq.  (S3) shows that  the diffracted intensity I is  inversely  proportional  to  the ,
thus it reaches to a peak at the point of  and then decreases sharply with further increase of k. As a result, the local
divergence angle of the electron vortex Ω can be defined as the polar angle corresponding to the peak of diffracted in-

tensity, i.e. Ω , here  is the wave vector of free-space electron. Therefore, the structured EVB

in the far-field will present the same pattern with the curve  in polar coordinates.

  Section 2: Fourier series expansion
In this work,  the parameterized azimuth gradient plays an important role in determining the pattern of EVB. For the
sake of generality, the parameterized azimuth gradient can be written in the form of trigonometric series as 

f ′ (θ) = α(a0 +
∞∑
n=1

(ancos (nθ) + bnsin (nθ))) , (S4)

α f (2π)− f (0) = 2π
F (θ)
f ′ (θ) = αF (θ)

where the scaling factor  is a constant that can be adjusted to satisfy the constraint condition . Obvi-
ously, any geometry enclosed by a single-value curve  in polar coordinates can be used to construct a suitable para-
meterized  azimuth  gradient  with  the  relationship  of ,  and  the  corresponding  Fourier  series  expansion
coefficients are given as  

a0 =
1
2π

r 2π
0 F (θ) dθ

an =
1
π
r 2π

0 F (θ) cos (nθ) dθ

bn =
1
π
r 2π

0 F (θ) sin (nθ) dθ

, (S5)

F (θ)
f3′ (θ) α = 1 a0 = 1

an bn

The arrowhead contour used in this work is enclosed by a single-value curve , as show in Fig. S1(a). Based on the
Eqs. (4) and (5), the relevant coefficients in parameterized azimuth gradient  are derived as  and . The
additional  coefficients  of  the  Fourier  expansion  and  are  shown in Fig. S1(b).  To  precisely  obtain  the  arrowhead
contour, here we use the first 40 terms of the Fourier expansion.
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  Section 3: Design of binary phase mask

φ (r, θ)
In  order  to  produce  a  structured  EVB,  the  binary  phase  mask  should  impart  a  transverse  composite  phase  profile

, which is the superposition of a generalized spiral phase and a Bragg carrier phase, to the incident electron wave
and expressed as: 

φ = φspiral + φBragg = lf (θ) + 2π
p
rcosθ , (S6)

p φ (r, θ)where l is the topological charge, and  is the carrier period. By performing the binary phase processing of , the
binary phase mask can be constructed with the following shape: 

H (r, θ) = 1
2
H0

{
sgn

[
cos

(
lf (θ) + 2π

p
rcosθ

)
+ D

]
+ 1

}
, (S7)

H0where  is the height of holographic grating, sgn is the sign function and D=0.9 is the duty-cycle.

  Section 4: Phase retrieval

Δz =
Ii i = 1 ∼ 5 Ai =

√
Ii

In order to retrieve the phase profile of the generated EVB, five images (one focal image, two over-focus images and two
under-focus images) are experimentally acquired using defocus increments of 2 μm, as shown in Fig. S2. The in-
tensity distribution of each image is  ( ), and thus the amplitude distribution can be expressed as . We
employ  defocus  series  reconstruction  technique  based  on  the  Gerchberg-Saxton algorithm to  iteratively  propagate  an
electron wave between different image planes.

A3

P3

As shown in flow chart of Fig. S3, the randomly generated phase and the experimentally recorded amplitude  are

combined as the wave function at the focal plane ( ) and begins the initial iteration. By fast Fourier transforming the

 

F
 (
θ)

3

2

1

0

1

2

3

0

30

60
90

120

150

180

210

240
270

300

330

an

bn

n

0 10 20 30 40

−0.3

−0.2

−0.1

0

0.1

C
o
e
ff
ic

ie
n
ts

a b

Fig. S1 | (a) The arrowhead contour enclosed by a single-value curve in polar coordinates. (b) The Fourier series expansion coefficients of the

corresponding parameterized azimuth gradient.
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Fig. S2 | Experimentally recorded intensity distributions of the structured EVBs at an interval of 2 μm along the z direction. All images

have same size of 13.6 μrad  13.6 μrad.
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P4

A4

Ai

product of spectrum and angular spectral transfer function, we can get the wave function at the plane ( ) as well as the
phase distribution.  This  phase distribution can be used to construct  the input  wave function for  the next  iteration by
combining  the  measured  amplitude .  In  the  same  way,  the  diffracted  electron  wave  propagating  through  the  five
planes forms a loop. We need to replace the amplitude at each plane with the measured value , so that the deviation in
the diffraction iteration of the angular spectrum can be corrected. In order to reduce the amount of computation of the
Fourier transform while ensuring the recovery accuracy, we set the spatial sampling of each image to 512×512. The re-
covery quality of the phase can be quantified by calculating the relative mean squared error (RMSE) of two recovered
phase distributions, 

RMSE =

√√√√ nx∑
x=1

ny∑
y=1

(
φj

(
x, y)− φj−1(x, y ))

2
/

nx∑
x=1

ny∑
y=1

(
φj−1 (x, y)

)2
, (S8)

ϕj(x, y) ϕj−1(x, y)where  and  are the phase recovered by the jth and (j−1)th iterations, respectively. A precise phase distri-
bution can be obtained when RMSE tends to a stable value after hundreds of iterations.

  Section 5: Modal decomposition

exp (ilθ)

Modal decomposition is an important technique that is often used to quantitatively analyze the OAM spectral distribu-

tions  of  complex  beams.  As  the  orbital  eigenstates,  the  wave  functions  of  OAM  modes  behave  as  spiral  harmonics

 and possess orthogonality properties with respect to each other. Therefore, any complex field can be represen-

ted by a linear combination of orthogonal basis modes as,
 

ψ(r, θ) = 1√
2π

+∞∑
l=−∞

al (r) exp (ilθ) . (S9)

alThe complex correlation coefficient  weights the contribution of l-th OAM mode and can be determined by
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Fig. S3 | Flow chart of electron wavefront retrieval based on the Gerchberg-Saxton transmission iterative algorithm. The symbols F and

F−1 denote the Fourier transform and the inverse Fourier transform, respectively.

Huo PC et al. Opto-Electron Adv  7, 230184 (2024) https://doi.org/10.29026/oea.2024.230184

230184-S4

 



a (r) = 1√
2π

w 2π

0
ψ (r, θ) (exp(ilθ ))∗dθ , (S10)

where the asterisk represents the complex conjugate. Thus, the intensity of the l-th OAM mode is, 

cl =
w ∞

0
|al( r )|2rdr . (S11)

cl
The weight factor of l-th OAM mode is intuitively defined as the relative intensity of such mode, and can be evalu-

ated by normalizing the intensity  to the total intensity of the electron beam as, 

Weightfactor = cl
+∞∑

n=−∞

cn

. (S12)

ψ = Aexp (iφ) A
φ

Based on the above analysis,  obviously the OAM spectrum of the complex field can be obtained once we know the
wave functions .  For three structured EVBs demonstrated in this work, the amplitude  is presented as
the  square  root  of  the  experimentally  measured  intensity  distribution,  and  the  phase  distribution  can  be  obtained
through the algorithm iteration described in ‘phase retrieval’ of methods. The calculated OAM spectral distributions of
these three structured EVBs are shown in Fig. 4 in the main text.
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Fig. S4 | (a–c) Diffraction angle distributions measured along different azimuth angle for three types of structured EVBs with a topological charge

l = 30. The measured diffraction angle distributions (blue points) agree well with the theoretical prediction (solid curves).
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Fig. S5 | (a–c) The simulated probability current density vector of the three EVBs with topological charge l = 30. The red arrows indicate the dir-

ection of the probability current of electron. The length of the red arrows is given in arbitrary unit normalized to the maximum value. Scale bars: 3

μrad. For these EVBs, the calculated average OAM value is 29.91 , 29.93  and 29.92 , respectively.
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