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  Section 1: Error Backpropagation
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We use  the  error  back  propagation algorithm and the  random gradient  descent  optimization method.  The  algorithm
defines a mean square error (MSE) loss function to evaluate the performance of P-DNN output for the desired target.
Assuming that the Nth layer is  the last  layer of P-DNN, the intensity of optical  field measured by the detector on the
output plane is ,  refers to a neuron. The error loss between the output plane and the target  can
be expressed as: 
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where K refers to the number of measurement points at the output plane. The process of network parameter optimiza-
tion can be seen as the process of minimizing function . When the phase only modulation method is selected, the
amplitude  is set to 1. The gradient of  with respect to  at a given layer  is expressed as:
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 is  the  discrete  summation  of  in Eq.  (2),  can  be  expressed  as

. Then,  can be expressed as:
 

∂uN+1
k

∂φl=N
i

= j · tNi (xi, yi, zi) · uN
i (xi, yi, zi) · hN

i (xk, yk, zk) , (S3)

l ≤ NFor every layer, , this gradient can be calculated using: 
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2 ≤ L ≤ N− 1where . In each iteration, the training data is input into P-DNN to obtain the loss function, which is then
used to update the entire network parameters.

  Section 2: Simulation and experimental results
Similar to Fig. 5, 6 in the text, Fig. S1 shows the complete test results. The output results obtained by taking handwritten
numerals and fashion datasets as input are shown. According to the energy distribution of the output plane, it  can be
concluded that P-DNN can successfully identify multiple tasks, while ensuring high accuracy.

  Section 3: Analysis of alignment error between network layers
We conducted a theoretical analysis to understand the impact caused by this alignment error. The identification accur-
acy of P-DNN is affected by the displacement along x, y and z direction between metasurfaces. The errors caused by dis-
placement along the x direction and y direction are similar. Figure S2(a) shows the simulation results obtained by the 1-
pix  (5  μm)  offset  of  the  two  layers  of  metasurfaces  in  the x direction,  and  the  recognition  accuracy  is  reduced  from
92.8% to 58.5%. Similarly, we also analyzed the errors caused by z direction. When errors of z direction exceeds 100 μm,
the recognition accuracy decreases with a small decrease from 92.8% to 90.7% (Fig. S2(b, c)). It can be inferred that to
ensure the identification accuracy of the diffractive neural network, it is necessary to ensure that the errors of the x dir-
ection and y direction is less than 1-pix and the errors of z direction is less than 100 μm.

He C et al. Opto-Electron Adv  7, 230005 (2024) https://doi.org/10.29026/oea.2024.230005

230005-S2

 

https://doi.org/10.29026/oea.2023.230005
https://doi.org/10.29026/oea.2023.230005


  Section 4: The polarization conversion efficiency
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We  have  measured  the  transmission  of  our  metasurfaces  at  multiple  wavelengths,  and  then  calculate  its  polarization

conversion efficiency by using  , where  is the intensity of the incident left circularly polarized light and  is in-

tensity of the cross circularly polarized light through the single layer metasurfaces. The measured polarization conver-
sion efficiency of single layer metasurfaces is shown in Fig. S3(a). Note the measured polarization conversion can reach
up to 82% at around 800 nm, while at other wavelengths between 740 nm and 900 nm, the efficiencies are also above
50%. For cascaded metasurfaces,  because the polarization should be converted twice,  the polarization conversion effi-

ciency is defined by , where  and  are the cross circularly polarized transmitted coefficient of the first and

second  metasurfaces,  respectively,  and  corresponding  experimental  result  is  about  51.3%  at  800  nm  (Fig. S3(b)).  The
conversion efficiency of cascaded metasurfaces is lower than the product of conversion efficiency of single layer metas-
urfaces, because there is scattering light and other losses between layers.To better demonstrate the recognition perform-
ance, we simulated the process by taking 80% of the energy of the outgoing light at the first layer and adding 20% of the
unmodulated incident energy, and do the same processing at the second layer. As shown in Fig. S4, it can be seen that
there is only a small energy deviation from the normal simulation, which does not affect the testing accuracy. Moreover,
we can see from the experimental section in the manuscript that the unmodulated light does not affect the recognition
accuracy of the objects.
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Fig. S1 | Simulation and experimental results of handwritten digital and fashion P-DNN. The percentage of energy distribution correspond-

ing to each input data on the output plane shows that P-DNN accurately focuses the energy to the preset area, and can accurately identify the in-

put object according to the energy distribution. ΔE represents the difference between the percentage of maximum and second maximum energy.
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  Section 5: Factors affecting the performance of P-DNN
The depth of a P-DNN has a significant impact on its ability to perform complex tasks, and there is a limit to the per-
formance when the network depth is fixed. Lin et al.  have demonstrated that increasing the depth of the network can
provide  greater  training  freedom  and  effectively  improve  the  performance  of  the  networkS1.  Therefore,  there  are  two
ways to enhance the performance of P-DNN. The most effective way is to increase the depth of the network, which can
effectively improve the performance of the network and be used for more complex tasks. The other way is to increase
the pixel numbers of each layer, which can also improve the performance of the network to a certain extent. When us-
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ing a 2-layer P-DNN with pixel  numbers of  200×200 (Fig. S5),  the test  accuracy on the "0"-"5"  dataset  reached 92.6%,
which is a 0.8% improvement compared to the results reported (91.8%) in the manuscript.  When the depth and pixel
numbers of the network increases, P-DNN can be used to perform more complex tasks such as classification with more
categories, feature extraction, etc.
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Fig. S4 | A comparison is made between the energy distribution obtained from unmodulated light and the ideal case. The energy distri-

butions of digits "0" to "5" are presented, respectively, showing that the impact of unmodulated light on recognizing energy distribution is negli-

gible.
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  Section 6: Additional phase error introduced by DMD
The principle of DMD is to control the reflection angle through rotating micromirrors to achieve amplitude modula-
tion. Therefore, slight variations in optical path differences may occur at different reflection angles, leading to the intro-
duction of phase noise. To analyze the impact of additional phase errors on network testing, we added random phase
noise within the range of [−1, 1] rad to the input images during simulation propagation. The test dataset used in this test
consisted of the same handwritten digits “0” to “5” as in the manuscript. The energy distribution characteristics in the
detection area were obtained for each input image, as shown in Fig. S6. The energy error of each class was within 0.2%
for all cases when the noise was added to the input images, which could be considered negligible. The energy was con-
centrated entirely in the target region, indicating that the phase noise introduced by DMD can be ignored while main-
taining a high accuracy rate. To reduce the phase error caused by DMD, one can add some random phase noise during
the training process, which can increase the robustness of the training results.

  Section 7: Effect of different numbers of shared layers and classification layers on P-DNN performance
In order to better demonstrate the performance improvement of  P-DNN, we used the same six digits  and six fashion
items as training datasets as in the manuscript. As shown in Fig. S7(a, b), it can be seen that with the increase of layers,
P-DNN can exhibit stronger performance and there is a significant increase in recognition accuracy on both datasets. It
has been observed that the number of classification layers has a certain degree of influence on the accuracy of task re-
cognition. In particular, for the same task, the 3-layer P-DNN with two classification layers achieves slightly higher ac-
curacy than a 4-layer P-DNN with only one classification layer, but lower accuracy than a 4-layer P-DNN with two clas-
sification layers. It also demonstrates that task switching can be achieved by replacing a relatively small number of lay-
ers while maintaining high recognition accuracy.
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To analyze the performance when adjusting the meta-atom distances and layer distces, we took the 2-layer P-DNN as
an example and used the same images of handwritten digits "0" to "5" as test data. We tested the design of P-DNN with
different separations and obtained recognition accuracy in the range of 100 μm to 800 μm. The results in Fig. S7(c) show
that the  recognition  accuracy  slightly  increases  as  the  layer  distances  gradually  increase.  Because  when  the  layer  dis-
tances  are  small,  the  network  connectivity  will  be  reduced,  which  affects  the  recognition  accuracyS2.  Ultimately,  we
chose 500 μm as the layer distances to balance the alignment difficulty and recognition accuracy in our manuscript.

Subsequently, we have attempted to implement more complex classification tasks using three and four layers in simu-
lation.  As  shown  in Fig. S8,  it  can  be  observed  that  using  a  3-layer  P-DNN  can  achieve  recognition  of  the  the  whole
MNIST and Fashion-MNIST datasets, but if higher accuracy is required, the number of classification layers should be
increased or four layers of P-DNN should be chosen. Similar to the result of 6 classification, the accuracy of 3-layer P-
DNN with two classification layers is slightly higher than that of 4-layer P-DNN with single classification layer. Increas-
ing the numbers of layers in the network can improve the recognition accuracy of the system, but the depth of the net-
work is still the most important factor. Within a certain range, increasing the depth of a neural network can enable it to
handle more complex tasks. In addition, we also added a training result of a 10-layer network to demonstrate that deep-
er networks do not necessarily lead to better performance. From Fig. S8(a), it can be observed that compared to the 4-
layer network, there is almost no improvement in recognition accuracy, but longer training times and larger computa-
tional  resources  are  required.  Combining  polarization  multiplexing  or  multi-wavelength  multiplexing  channels  of
metasurfaces with plugins enable more parallel tasks to be performed, which may be a researchable direction.
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In addition,  the selection of  layers is  related to task difficulty and information storage limit  of  each layer.  Unfortu-
nately,  there  is  currently  no  universal  formula  that  can  accurately  provide  the  number  of  layers  needed  for  training
based on the complexity of the task. Typically, the number of layers and pixels is chosen based on experience and mul-
tiple attempts. In practical application, it is hoped that the number of switchable layers should be as few as possible to
complete the task, in order to reduce the difficulties in making pluggable devices in the future.
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