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  Section 1: Benchmark measurements of the computational frame rates
Modern software, including the software we developed for this study, incorporates many memory allocations, IO com-
munications, and more, alongside core computations. These programs are often asynchronous, allowing parallel execu-
tion of  numerous steps,  thereby increasing the complexity of  the execution process  and complicating direct  measure-
ments on the actual working software.  Therefore,  we developed specific benchmark codes for measurement purposes.
These codes only incorporate the essential implementations for assessing the metrics of interest. The benchmark codes
were compiled under the same platform, using the same compiler and parameters as the working software described in
the main text.

The Raspberry Pi micro-controller, compiler, and GUI framework used are as previously described. For the compiler,
we used the “-O3” option for maximal execution speed optimization and enabled three additional options: “-fno-excep-
tions,” “-fvisibility-inlines-hidden,” and “-fomit-frame-pointer.”

To ensure accurate timing from the measurement to the critical step, we determined the necessary preparations, such
as  relevant  storage  structures,  before  starting  each measurement.  Resource  releases  were  executed  post-measurement.
Memory for storing the start and end time points of each measurement was pre-allocated to circumvent disturbances
during the measurement process due to automatic memory allocation mechanisms. Once all measurements were com-
plete, the metrics were calculated, evaluated, and output.

We constructed the same 144-bit values as outlined in the main text to indicate the state, which were initialized at the
outset as a set of random bit values.

For our bitwise operations, we defined the process of measuring a round as follows:
1. All bits are inverted to simulate a complete update each time
2. An array of square squares, each side being 50 pixels, is generated in the center of a 1920×1080 image. This array is

compactly arranged as 12×12, and the corresponding squares are filled with white or black, depending on the bit state.
We maintained consistency with the above process for the Fourier transform-based scheme and generally computed

the two-dimensional (2D) real-to-complex Fast Fourier transform once in each round of the process. A randomly gen-
erated 2D matrix was used as computational input before the measurement. Memory allocation and release were per-
formed before  and  after  the  measurement  starts  to  minimize  additional  overhead  caused  by  system calls.  The  imple-
mentation of the Fast Fourier Transform utilized the basic API provided by the FFTW3 library.

In addition, considering that Fourier transform schemes often require the computation of the entire image, we separ-
ately measured for 1920×1080 images as well as for 600×600 images (consistent with the size of the area that would actu-
ally be updated by our scheme).

The measurement we used was to count the total time of multiple rounds of computation and subsequently calculate
the time of each round. We executed 1000000 cycles for our scheme and 1000000 cycles for the Fourier scheme, and cal-
culated their average execution times, obtaining the following measurements:

We should  emphasize  that  we  did  not  utilize  any  advanced  vectorization  instructions  or  special  engineering  tech-
niques  to  further  accelerate  the  computation  in  this  particular  context.  The  results  presented  above  represent  only  a
quantitative outcome on our current computing platform. They are used to characterize the metrics to a certain extent
and do not represent a generic, absolute metric quantity.

Our scheme is theoretically of lower algorithmic complexity, and the computational efficiency can potentially be fur-
ther  enhanced considering modern processors’ efficient support  for  bitwise  operations,  as  well  as  the on-demand up-
date of the binary control pattern described in the main text. The Fourier transform scheme we measured did not in-
volve generating the final image used for dynamically refreshing the image on the device. Additionally, in practice, this

 
Table S1 | Measurement results of our bitwise scheme and traditional Fourier scheme.

 

Bitwise FFT-2D (600×600) FFT-2D (1920×1080)

Iterations 1000000 1000 1000

Frame generation time (ms) 0.001256 36.631 213.324

Frame rates (kHz) 796.178 0.027 0.005

Liu YC et al. Opto-Electron Adv  7, 230108 (2024) https://doi.org/10.29026/oea.2024.230108

230108-S2

 



type of scheme often requires an iterative process to obtain the phase hologram, which further constrains the computa-
tional frame rate.

  Section 2: Pattern distortion correction
According to the diffraction process, each pixel on the metasurface device can be considered as a spherical wave source.
When we use a  flat  screen in a  finite  distance to receive the reconstructed pattern,  distortion occurs  as  shown in Fig.
S1(a). The point A of the ideal pattern is extended to point A', with distortion becoming more pronounced the closer it
is to the pattern edge, which is similar to pincushion distortion in camera imaging. To mitigate this, we performed an
inverse-distortion transformation on the target pattern so that the final distorted pattern would match what it would be
without distortion.

For simplicity, we describe the pre-distortion process in a one-dimensional case. Each pixel on the device can be seen
as a grating structure. According to the grating equation:
 

d× sin (θ) = m× λ , (1)

d θ m λ
d = 2× p p ±1

where  is the grating stripe spacing,  is the diffraction angle,  is the diffraction level, and  is the wavelength. On the
diffraction plane, , where  is size of the square pixel. For simplicity, only  level is interest, so we can have:
 

sin (θ) = ±λ
2× p

, (2)

As depicted in Fig. S1(a), the sine function relationship does not hold because the point A is stretched to A’. The new
relationship between OA’ and the diffraction angle can be described using the tangent function.

L
cos (θ)

The diffraction angle is used as an invariant in this process. First, we calculate the angle, then the position of the point
before being stretched. From the source to the flat screen, the vertical distance be L (shown in Fig. S1(a)). When distor-

tion occurs, the propagation distance from the point source becomes  times. Therefore, compensating the light

intensity of some pixel values according to this relationship is achieved in the image by using different gray values.
For a 2D pattern, the position and intensity grayscale value of each non-distorted pixel is calculated. The new pattern

is then used as an input to calculate the hologram. The target display pattern and the pattern with the pre-transforma-
tion and intensity compensation are shown in Fig. S1(b) and Fig. S1(c), respectively.

In the experimental section of the main text, we demonstrated our system's ability to operate at different wavelengths.
In  this  study,  our  metasurface  device  was  primarily  designed  for  532  nm,  which  causes  some degree  of  aberration  at
both  473  nm  and  633  nm.  We  chose  patterns  where  the  aberration  is  more  pronounced  during  the  experiments,  as
shown in Fig. S2. However, this can be solved by pattern distortion correction and intensity compensation for multiple
wavelengths during the device design.
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Fig. S1 | Schematic  diagram of  the  distortion  correction. (a) L is  the  distance  from the  point  source  to  the  screen, O is  the  center  of  the

screen, and A and A' are the ideal point position and the distorted point position on the straight screen, respectively. (b) Target design pattern,

only one pattern was selected for the demonstration. (c) The pattern after pre-forming reverse distortion transformation and intensity compensation.
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  Section 3: Discussion on the channel number allocation
In the main manuscript, we allocated 144 channels specifically for the Tetris game. Determining the appropriate num-
ber of channels requires consideration of the intended design objectives. Typically, there are two primary factors to ac-
count for: the intricacy of the display pattern and the precision required for its trajectory and speed.

For intricate displays, the number of channels might vary significantly, even when showcasing similar content.
The intricacy and artistic style of the display content can be tuned by designing the sub-patterns from each channel

and adjusting the number of channels. As illustrated in Fig. S3(a), the classic 7-segment digital tube can depict numbers
from 0 to 9.  Meanwhile,  as  demonstrated in Fig. S3(b),  by increasing the number of  channels  to 23,  we can showcase
numbers  from  0  to  9  in  another  styles.  Typically,  rendering  intricate  curve  objects  necessitates  a  greater  number  of
channels.

Considering object motion, intricate 2D movements often necessitate additional channels to augment the set of basic
sub-patterns. The channel count largely hinges on the desired movement's intricacy, precision of its trajectory, and the
accuracy of speed control.

 

a b

Fig. S2 | The experimental result plots with more obvious pattern distortion at (a) 473 nm and (b) 633 nm, respectively.
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Fig. S3 | Schematic diagram of different digital tube designs to project numbers from 0 to 9. (a) A typical 7-segment digital tube. (b) 23-

segment digital tube.
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d d
Using the Tetris game we designed as a foundational example: Four adjacently positioned channels project four im-

mediately adjacent squares, each with a side length of , as illustrated in Fig. S4(a). The positional accuracy stands at .
Only trajectories characterized by either horizontal or vertical one dimension (1D) movement exhibit smoothness.

d/T.

Assuming that our system switches 2 frames at a time interval of T. This is influenced by the computational and dis-
play frame rates previously mentioned, which, for this discussion, is held constant. Thus, objects’ minimum velocity is
gauged at 

d/2
d/(2T)

When the reconstructed pattern overlap by half—while maintaining the total projection area—the number of chan-
nels required escalates to nine, as depicted in Fig. S4(b). These channels remain tightly organized adjacent to one anoth-
er on the device, indicating an expansion in device surface area. Now, the positional accuracy refines to , and objects’
minimum velocity is adjusted to . This configuration avails more freedom in motion within the same projection
space, rendering the trajectory more fluid, and it facilitates enhanced precision in speed control.

There exists a direct correlation between the overlap range of reconstructed sub-patterns and both the liberty in mo-
tion and precision in object speed. Moreover, when keeping the projection range consistent, the overlap extent correl-
ates positively with the channel count. Yet, if the aim is to maintain the device’s surface area while augmenting the chan-
nel count, it would be imperative to curtail the number of unit structures within each channel space. This adjustment
could potentially compromise reconstructed pattern’s display quality.

Consequently,  practical  scenarios might be more intricate than the example delineated here.  Thus,  determining the
number of channels mandates a meticulous evaluation across multiple facets, inclusive of displayed pattern complexity,
motion trajectories, and even the device design and associated manufacturing expenses.
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Fig. S4 | Schematic diagrams of different projection modes within the same projection range. All channels are tightly arranged, with only

the reconstructed sub-patterns being designed for different situations (a)  where the reconstructed patterns are tightly arranged and the motion

diagram in this situation. (b) The reconstructed patterns overlap by half and indicate the direction of motion in this case.
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  Section 4: Software architecture and development
The control  program we developed,  which  runs  on  the  Raspberry  Pi  micro-controller  mentioned in  the  main  text,  is
based on the C++ programming language (ISO C++ 20 Standard Version).

We primarily developed the code under Windows 10, utilizing Visual Studio 2022 (Microsoft). The MSVC build tool
on Windows served as a toolchain for development and debugging. On the Raspberry Pi platform (64-bit Raspbian OS,
Arm Linux), we used the GNU toolchain (GCC 10.1) to build the program. CMake (Kitware, Inc.) was employed as a
cross-platform  build  tool.  For  GUI  development,  we  used  the  cross-platform  GUI  framework  Qt  (Qt  company,  Qt
5.15.2 Version).

The  program’s  architecture  is  depicted  in Fig. S5 below.  The  channel  data  is  designed  as  a  set  of  bit  values,  stored
compactly in memory, and shared across all components (with data read/write protection in place). The program runs
three main parts independently: the game server, the debug console, and the rendering server.

The game server only implements the game logic and encodes the game state data to the channel data, allowing for
the implementation of other pixel games, such as Gluttony. The rendering server only generates the compact, underly-
ing binary image data based on the channel data and rendering parameters for loading onto the DMD. This process is
actually achieved by writing calculated raw data directly to the HDMI port and doesn't require processing by the graph-
ics rendering module (such as OpenGL). The debug console is primarily used in experiments to adjust parameters such
as channel size, rendering parameters, and the channel on/off state. All parameters can be saved to a configuration file
and will automatically load at the beginning of the program start. Once debugging is complete, the debug console can be
fully closed to further conserve computing resources.
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Fig. S5 | Schematic diagram of the architecture of the control software.
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  Section 5: The optical system for experiments

  Section 6: Elimination of zero-order diffracted light
In Fig. 5 in the main text, a bright spot is present in the center of the experimental result. The bright spot is unmodu-
lated zero-order diffracted light. Since our study mainly focuses on high-speed dynamic holographic updating strategies,
we only employed a basic iterative optimization algorithm to compute the holograms.

Some of the following solutions can be used to eliminate the effect of zero-order light on the display: designing off-ax-
is holograms to keep the zero-order light out of the main viewing areaS1; setting up optical filters in the optical path to
filter out the zero- order light; designing devices using the polarization conversion properties of the anisotropic struc-
ture to control the unmodulated light field components finelyS2; and improving the modulation efficiency of the metas-
urface through further optimization of the structure parametersS3. The core solution of our paper does not conflict with
these works, and thus can be combined to achieve better display performance.

  Section 7: Description of supplementary movies
File name: Movie S1
Description: The whole process of holographic Tetris game and its channel control patterns that ended in game failure.
File name: Movie S2

Description: The whole process of holographic Tetris game and its channel control patterns that ended in game clear-
ance.
File name: Movie S3

Description: The actual interactive game process, showing the whole process of using the gamepad to play the game.
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Fig. S6 | Schematic diagram of the optical system. The laser propagates through a spatial pin-hole filter and collimating lens L2 and becomes

an expanded laser beam with suitable beam quality. Then, the expanded laser beam is modulated by a DMD at high speed. The coded beam

propagates through the 4f system consisting of lens L3 and lens L4, and reconstructed holograms are subsequently acquired behind the sample.
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