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  Section 1: Architecture of the lightweight DNN in PI-FPA
At present, mainstream fringe analysis approaches using deep learning exploit end-to-end fully convolutional networks
to establish an accurate inverse mapping between single-frame fringe and the label phase using massive network para-
meters. To achieve high-performance phase retrieval, these networks extract high-resolution features to encode accur-
ate spatial information of fringes that is crucial to predict the detailed output, while enlarging the receptive field of fea-
ture maps to distill high-level semantic information for improving the accuracy of phase measurement. The U-Net and
its derivatives employ multiple convolution and downsampling layers with a small stride to encode different features in
both scale and level, and fuse the features of the same level to gradually increase the spatial resolution by skip connec-
tions. Due to the redundant computation introduced by the high-resolution feature extraction at the top of the network
structure, U-Net improves the phase measurement accuracy at the cost of the network inference speed.

Different  from  fringe  analysis  methods  using  end-to-end  deep  learning,  as  shown  in Fig. S1,  the  proposed  PI-FPA
consists of two main parts: a LeFTP module with the prior knowledge of FT methods and a lightweight deep neural net-
work (DNN). Thanks to robust phase estimation of LeFTP, it not only helps PI-FPA to circumvent the requirement of
collecting a large amount of high-quality data in supervised learning methods, but also relieves the burden of phase re-
finement for lightweight DNNs. The lightweight network, consisting of the context path and the spatial path inspired by
BiSeNetS1,S2, is utilized to further improve the phase accuracy at a low computational cost compared with universal end-
to-end image transform networks (U-Net and its derivatives). The context path aims at collecting the fringe and initial
phase features with a large receptive field through fast downsampling, and integrating the global context information to
guide the refined features for learning. In the encoder part of the context path, a fast downsampling strategy with sever-
al ConvX blocks and the Short-Term Dense Concatenate (STDC) module is first used to extract the feature information
with scalable receptive field and multi-scale information in Fig. S1(b) and S1(d). Instead of configuring more channels
for  higher-level  layers  as  U-Net,  low-level  layers  with  broader  channels  in  our  blocks  are  used  to  encode  more  fine-
grained features with small receptive field, while high-level feature tensors with large receptive field have fewer channels
as the resolution decreases. The fast downsampling strategy can produce feature maps with different downsampled ra-
tios (including 1/2, 1/4, 1/8, 1/16, and 1/32), respectively. In the decoder phase, the attention-based feature refinement
(AFR) module and the fast upsampling operation based on bilinear interpolation are utilized to improve the feature res-
olution progressively for avoiding the increased computational complexity caused by common transposed convolution.
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Fig. S1 | Overview of  the proposed physics-informed deep learning method for  fringe pattern analysis (PI-FPA).  (a)  PI-FPA including a LeFTP

module and a lightweight network. (b–d) ConvX block, AFR, FFM, and STDC modules of the lightweight network.
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For the AFR module in Fig. S1(b),  the channel  confidences of  high-level  features are estimated using a global  average
pooling and a 1×1 ConvX block, and act on themselves to guide the refined feature learning. The bilinear interpolation
is applied to the refined tensor after it is residually connected to the inputs of each fast upsampling module.

M(x, y) D(x, y)

In the  spatial  path,  its  encoder  part  shares  the  same parameters  with  the  context  path,  and captures  the  spatial  in-
formation encoding  rich  detail  information and outputs  low-level  features,  while  the  context  path  encodes  the  global
context information and outputs higher-level features. The features with 1/8 downsampled ratio from the context path
and the spatial path are concatenated by Feature Fusion module (FFM), and upsampled to output final phases using the
predicted  and  in Eq. (7).

  Section 2: Single-shot 3D imaging method using PI-FPA and stereo phase unwrapping

2π

Benefiting from the proposed PI-FPA, we can successfully achieve high-performance single-frame phase retrieval.  Al-
though PI-FPA almost  perfectly  extracts  the  wrapped phase  from a  64-period fringe  image,  it  introduces  more  phase
ambiguities, leading to the low reliability of phase unwrapping for absolute 3D measurements. In Fringe projection pro-
filometry (FPP), phase unwrapping methods can be grouped into three main classes in aspects of the operating domain:
spatial  phase  unwrappingS3,S4,  temporal  phase  unwrappingS5−S9,  and  stereo  phase  unwrappingS10−S14. Spatial  phase  un-
wrapping  is  highly  suited  for  dynamic  3D  acquisition  and  can  provide  a  relatively  absolute  phase  map  using  only  a
single wrapped phaseS3. However, the continuity of the phase is an essential prerequisite for the successful implementa-
tion of spatial phase unwrapping, making it impossible for measuring discontinuous surfaces or abrupt depth with step
heights greater than . In order to solve the problem above, temporal phase unwrapping methods are proposed to real-
ize absolute phase unwrapping with the aid of  additional  wrapped phase maps with different  frequenciesS5,  but  at  the
cost of measurement efficiency.

ϕ(x, y) (−π, π]
Φ(x, y)

Different from the two methods above, stereo phase unwrapping utilizes multi-view geometric constraints to retrieve
absolute phases using high-frequency wrapped phases from different perspectives as shown in Fig. S2, potentially over-
coming  the  respective  bottlenecks  of  spatial  and  temporal  phase  unwrapping.  Here,  we  continue  to  use  the  previous
workS11 proposed  by  our  team,  which  builds  a  position-optimized  multi-camera  system to  guarantee  the  reliability  of
stereo phase unwrapping. Specifically, a multi-view structured light system including a projector and three cameras and
a weighted phase consistency check strategy are adopted to achieve single-shot 3D imaging. Due to the truncation effect
of the arctangent function, the obtained phase  is wrapped within the range of , and its relationship with
the absolute ones  is: 

Φ(x, y) = ϕ(x, y) + 2πk(x, y) , (S1)

k(x, y) Φ(x, y) 0 N− 1
ϕc1(x, y) N

kc1(x, y) Zc1
k (x, y)

Zc1
k (x, y)

k(x, y)

where  represents  the  fringe  order  of ,  and  its  value  range  is  from  to .  For  the  wrapped  phase
 of N-period fringes from the main camera, the fringe order of each valid pixel exists  possibilities. Taking each

possible order  into consideration, the corresponding depth value  is calculated using system paramet-
ers between the main camera and the projector. It is easy to find that some possible depth values  are beyond the
pre-defined depth range based on depth constraint, and the corresponding orders  can be excluded from the can-
didates: 

Zmin ≤ Zc1
k (x, y) ≤ Zmax . (S2)

[Zmin,Zmax]By setting an appropriate depth range , it is theoretically possible to exclude all wrong candidate points and
directly  output  the  absolute  phase,  while  is  infeasible  in  most  applications  for  a  large  3D  measurement  volume.  And
then, a weighted phase consistency check strategy is used to eliminate remaining false candidates after depth constraint: 

Δϕc1c2c3
k (xc1, yc1) = γ1Δϕ

c1c2
k (xc2, yc2) + γ2Δϕ

c1c3
k (xc3, yc3) , (S3)

(xc2, yc2) (xc3, yc3)
Δϕc1c2

k (xc2, yc2) Δϕc1c3
k (xc3, yc3)

γ1 γ2

γ1

where  and  are the corresponding coordinates of the remaining candidates reprojected in the auxiliary
cameras C2 and C3,  and  are the phase difference between the main camera C1 and the aux-
iliary cameras C2 and C3. The weighted coefficients  and  depend on the baseline between the main camera and the
auxiliary  camera,  and  the  large  baseline  corresponds  to  a  small  weighted  coefficient.  Here,  we  set  a  small  baseline
between C1 and C2 and a small threshold of  to efficiently decrease the number of candidates by the phase consistency
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γ2check. And a large baseline between C1 and C3 and a large threshold of  are set to further reject all the remaining false
candidates by the second phase consistency check, and convert the absolute phase to the 3D coordinates using system
parameters between the cameras C1 and C3, enabling high-precision single-shot 3D imaging.

  Section 3: Experimental setup and data process

α1 β1

To prepare  datasets  for  the  deep  neural  network,  a  multi-view structured  light  system is  set  up  including  a  projector
(LightCrafter 4500Pro,  Texas Instruments)  and three cameras (acA640-750um, Basler)  as  shown in Fig. S3.  To collect
fringe data for training,  the projector projects  three sets  of  PS patterns with different periods (including 1,  8,  and 64)
onto the test objects. The captured 64-period fringe image is the input of PI-FPA, and the label phase is obtained by 12-
step PS. In the experiment, we collected the dataset for training, validation, and testing from 1200 different scenes in-
cluding the random combination of 30 simple and complex objects. The whole dataset has 1200 image pairs, which are
divided into 800 image pairs for training, 200 image pairs for validation, and 200 image pairs for testing. For the train-
ing images, all samples were randomly combined, rotated, and placed in the measured area. The fringe images collected
by  the  camera  are  directly  input  into  the  network  without  any  image  preprocessing  and  data  augmentation.  During
training, to monitor the performance of the neural networks for samples that they have never seen, the scenes in these
training,  verification,  and  testing  datasets  are  separate  from  each  other.  The  proposed  PI-FPA  is  implemented  using
Pytorch framework (Facebook) and is computed on a desktop computer equipped with an Intel i7-9700K CPU (8 cores,
8 threads) and an NVIDIA GeForce RTX2080Ti graphics card (4352 CUDA cores, 11 GB VRAM). The composite loss
function consists of mean square error (MSE) and mean absolute error (MAE) in Eqs. (12–14). To maximize the single-
frame fringe analysis performance of PI-FPA,  and  are set as 1 and 0.5 after an exhaustive empirical search. Since
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Fig. S2 | The diagram of stereo phase unwrapping based on multi-view geometric constraints.
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Fig. S3 | The diagram of the multi-view structured light system consisting of a projector and three cameras.
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α2 β2

the initial phase from LeFTP guides the lightweight DNN to enhance its phase recovery ability, in the early stage of net-

work  training,  and  are  set  as  0.1,  and  then  gradually  reduced  to  0.02.  The  optimizer  is  Adam,  and  the  training

epoch is set as 300. The loss curves of the training and validation dataset for LeFTP and PI-FPA are shown in Fig. S4.

  Section 4: Fringe analysis results of PI-FPA and U-Net using different amounts of training images

%

Here, we present single-shot fringe pattern analysis results of U-Net and PI-FPA using different amounts of training im-

ages as shown in Fig. S5. Compared with U-Net with 800 training image pairs, PI-FPA reduces the MAE of the phase er-

rors by about 12.55  while requiring only 400 training image pairs, which demonstrates its good generalization.
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Fig. S4 | Loss curves of the training and validation dataset for LeFTP and PI-FPA. (a)  MSE of the phase outputted by LeFTP. (b)  MSE of the

phase outputted by PI-FPA. (c) MAE of the Fourier outputted by LeFTP, (d) MAE of the Fourier outputted by PI-FPA.

 

MAE: 0.0741

Diff (rad)

0

0.5

MAE: 0.0932MAE: 0.0967 MAE: 0.0815

a b c d

e f g h

Fig. S5 | Comparative  results  for  single-shot  fringe  pattern  analysis  of  the  David  model  using  different  amounts  of  training  images.  (a, b)  The
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  Section 5: Supplementary Videos
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 Video S1 | Precision analysis results for measuring a ceramic plane and a standard sphere moving along the Z axis using 3-step PS, FTP, U-

Net, and PI-FPA.
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 Video S2 | 3D measurement results of the rotated industrial part using 3-step PS, FTP, U-Net, and PI-FPA.
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Non-rigid dynamic face PI-FPA

 Video S3 | 3D measurement results of non-rigid dynamic face using PI-FPA.
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