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In this supplemental document we illustrate the fabrication method of the GaSe-transferred microfiber, the power de-
pendence of third harmonic (TH) under picosecond pump, the broadband SH spectrum pumped by an amplified spon-
taneous emission (ASE) source, the origination of polarization dependent SH and calculation and calibration results of
conversion efficiencies for references cited in Table 1.

  Section 1: Chemical-free transfer method of the GaSe-transferred microfiber.
The GaSe-transferred microfiber was fabricated in 3 steps with a chemical-free transfer method, as shown in Fig. S1.

1. Multilayer GaSe crystalline was mechanically exfoliated from a bulk GaSe crystal with scotch tape.
2. Push the scotch tape onto a planar polydimethylsiloxane (PDMS), leaving the multilayered GaSe on the PDMS.
3.  With the aid of  a  microscope,  the PDMS with GaSe adhering on the surface is  pressed down to the microfiber’s

tapered region.  Remaining  the  pressing  state  for  a  few minutes  until  the  GaSe  is  empirically  determined  to  be  trans-
ferred on the microfiber, then lift the PDMS upward. In this step, the ~30 mW red laser incident to the microfiber for
~20 minutes helps the layered GaSe to adhere onto the microfiber, when the PDMS was lifted away.

  Section 2: Inherent distribution pattern of second harmonic and sum frequency peaks in the frequency
region.
Circular frequencies of pump sources naturally satisfy the relation ω1>ω2>ω3>…>ωn, and we can easily find
 

2ω1 > ω1 + ω2 > ω1 + ω3 > . . . > ω1 + ωn

2ω2 > ω2 + ω3 > ω2 + ω4 > . . . > ω2 + ωn
. . .

2ωn−2 > ωn−2 + ωn−1 > ωn−2 + ωn

2ωn−1 > ωn−1 + ωn > 2ωn

, · · · ,

> · · · >

By  selecting  suitable  pump  wavelengths  to  satisfy ω1+ωn>2ω2, ω2+ωn>2ω3  ωn−3+ωn>2ωn−2, ωn−2+ωn>2ωn−1,
ωn−1+ωn>2ωn, relations listed above can be connected end to end, resulting into 2ω1>ω1+ω2~ω1+ωn>2ω2>ω2+ω3~ω2+ωn>
2ω3 2ωn−2>ωn−2+ωn>2ωn−1>2ωn.  It  can be seen that sum-frequency signals are regularly divided by SH signals.
The case that n equals to 3 is illustrated in Fig. 4(a).

  Section 3: Derivation for the ratio of spectral bandwidths between second harmonic and superluminescent
light-emitting diode pump.

Pω(λ) = e−ωx2
The normalized Gaussian-shaped spectrum of superluminescent light-emitting diode (SLED) source can be assigned as

 (a>0), and its 10-dB bandwidth is
 

BWω = 2λ0 = 2
√
− 1
a
ln Pω (λ0) , (S1)

Pω (λ0)where  is one tenth of the maximal power.
Assuming phase-matching condition is satisfied, the quadratic relation between pump and SH can be expressed as
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therefore, the 10 dB bandwidth of SH spectrum can be obtained from , whose bandwidth can be express

as ,  where  equals to .  However,  due to the frequency-doubling process,  bandwidth of

SH spectrum equals to half that of 
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Fig. S1 | Fabrication process of the GaSe-transferred microfiber.
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Thus, the ratio of spectral bandwidths between SH and pump is 
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  Section 4: Power dependence of third-harmonic generation under 1550 nm picosecond laser pump.

  Section 5: Broadband second harmonic from the GaSe-transferred microfiber implemented by an amplified
spontaneous emission source.

  Section 6: The origination of the polarization dependent second harmonic and the equivalent coverage ratio.
The origination of the polarization dependent SH and the equivalent coverage ratio can be analyzed from:
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, (S5)

this equation describes the relationship between the second-order nonlinear polarization, the nonlinear tensor and elec-
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Fig. S2 | Spectral evolution of TH at 516.3 nm under the 1550 nm picosecond laser pump.
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Fig. S3 | Broad SH spectrum excited by an amplified spontaneous emission source.
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tric field components of incident pump light. E(ω), P(2ω) represent electric field vectors of pump light and second-or-
der  nonlinear  polarization  (with x and y correspond  to  zigzag  and  armchair  directions,  respectively). dij represents
nonzero element of ε-GaSe.

It can be written as:   P(2)
x (2ω)

P(2)
y (2ω)

P(2)
z (2ω)

 = 2ε0

 −2d22Ex(ω)Ey(ω)
−d22E2

x(ω) + d22E2
y(ω)

0

 ∝

 −2Ex(ω)Ey(ω)
−E2

x(ω) + E2
y(ω)

0

 , (S6)

by combining its components, the vector form of the nonlinear polarization can be rewritten as 

P(2)(2ω) ∝ −2Ex(ω)Ey(ω)x̂+ [E2
y(ω)− E2

x(ω)]ŷ , (S7)

and the produced SH can be expressed as 

I(2ω) ∝
∣∣P(2)(2ω)

∣∣2 ∝ [−2Ex(ω)Ey(ω)]2 + [E2
y(ω)− E2

x(ω)]2 = [E2
x(ω) + E2

y(ω)]2 . (S8)

Substituting Ex=Etcosθ, Ey=Etsinθ (Et=Ex+Ey) into Eq. (S8), we can obtain that 

I(2ω) ∝ E4
t , (S9)

it can be seen that SH intensity is proportional to the quartic function of projection of E(ω) to the local x-y plane ele-
ment of the GaSe coating. The projection changes regularly with the polarization direction of pump light, and the ex-
cited SH will change accordingly. According to the fundamental relationship in Eq. (S9), we calculated the polarization
dependent SH in Fig. 1(g) and obtianed the equivalent coverage ratio. 

  Section 7: The calculation and calibration results of conversion efficiencies for references cited in Table 1.
To facilitate comparison, the conversion efficiencies presented in Table 1 have been unified in the same unit. Specific-
ally,  the normalized conversion efficiency on per  unit  length in the work in ref.26 of  the main text  is  directly  given as
5×10–10 %W–1cm–1, which is equivalent to 5×10–11 %W–1mm–1. In ref.14, the length of the silica photonic crystal fiber and
average pump power are 150 mm and 500 mW, respectively. With the given absolute conversion efficiency of 1.6×10-6,
the  normalized  conversion  efficiency  per  unit  length  is  calculated  as  2.1×10−6 %W–1mm–1.  In  ref.31,  the  length  of  the
doped fiber and average pump power are 25 mm and 370 mW. With the given absolute conversion efficiency of 10–8, the
normalized conversion efficiency per unit length is calculated as 1.1×10–7 %W–1mm–1. From Fig. 4 of ref.32, the normal-
ized conversion efficiency is approximately 2×10−4W –1. The nonlinear interaction length is 230 mm, and the normal-
ized conversion efficiency per unit length is 8.7×10 −5 %W–1mm–1. In ref.3, the length of the hollow-core fiber is 250 mm,
and the used pump power is at the level of 102 mW. Combined with the given absolute conversion efficiency of 10-4, the
normalized conversion efficiency per unit length is calculated as 4×10−4 %W–1mm–1. In ref.29, SH is enhanced by 20 times
compared with that excited in a pristine microfiber. Considering the 60 μm length of the transferred WS2 coating, the
normalized enhancement factor per unit length is calculated as 333 times·mm–1.

In our previous work, the absolute power of SH has been challenging to measure directly with a power meter, and the
conversion efficiencies were estimated through indirect measurement and calibration methods, which may have intro-
duced errors. Fortunately, the proposed method in this work ensures a strong SH of nanowatt-level, allowing us to dir-
ectly measure the collected SH by a power meter. This provides us a new method to calculate the weak SH power and
corresponding conversion efficiencies. The main steps of this method can be summarized into three points: 1) Record-
ing the SH absloute power/intensity count using a power meter/spectrometer under high/low pump power, respectively.
2) Calculating the conversion coefficient between unit power and one count. 3) Deriving the SH power and its conver-
sion efficiency. By using the above method, we updated conversion efficiencies of the previous work (ref.7, 24, 27, 28, 30) for
accuracy. Taking the losses in the experimental system into account, normalized conversion efficiencies of ref.24 are up-
dated to 1.6×10–5 %W–1(4.0×10–6 %W–1mm–1)  and 7.7×10–8 %W–1(1.9×10–8 %W–1mm–1) under picosecond or  continu-
ous-wave (CW) pump. Similarly, the normalized conversion efficiency of ref.27 is updated to 3.4×10–11 %W–1(1.7×10–11

%W–1mm–1) under CW pump. The normalized conversion efficiency of ref.30 is estimated to be 5.4×10–9 %W–1(1.5×10–8

%W–1mm–1)  under  picosecond  pump.  The  normalized  conversion  efficiency  of  ref.28 is  updated  to  2.4×10–7
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%W–1(4.2×10–7 %W–1mm–1)  under  picosecond  pump.  The  normalized  conversion  efficiency  of  ref.7 is  updated  to
1.7×10–6 %W–1 under  picosecond  pump.  The  normalized  conversion  efficiencies  of  this  work  are  estimated  to  be
3.2×10–3 %W–1(0.08 %W–1mm–1) and 1.3×10–7 %W–1(3.2×10–6 %W–1mm–1) under picosecond or CW pump.
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