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Fig. S1 | The current ratio (the total current value was 3 Amperes) dependent power density of the DUV light source, which was meas-
ured at the center of the irradiation area and 4.5 cm away from the DUV LED arrays.
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Fig. S2 | The reduction of TCID50 (averaged values ± standard error) on SARS-CoV-2 and its variants at different temperatures. (a) −50

°C. (b) −20 °C. (c) 23 °C.
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Note: In view of the light absorption and scattering/reflecting effect of the S protein, the light transport model can be

simplified as in Figure S4b. Assuming that the initial light intensity (irradiated on the surface of S protein) was I0 and
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Fig. S3 | The reduction  of  TCID50 (averaged values  ±  standard  error)  on  SARS-CoV-2. (a)  DUV dose*Viral  strain,  where  data  of  different

temperatures were averaged. (b) Temperature*Viral strain, where data of different DUV doses were averaged.

 
Table S1 | Physicochemical property of S protein of SARS-CoV-2 WT and Omicron1.

 

Viral strain Published by State
RCSB

PDB ID 2
PDB DOI 2

Number of
amino acids

Isoelectric
point

Extinction
coefficient at

280 nm
(1 mg/ml) 3

Extinction
coefficient at

280 nm
(1 mg/ml) 4

WT
Cell (2020) 181: 281 Open 6VYB 10.2210/pdb6VYB/pdb 1281 6.04 0.982 0.968

DOI: 10.1016/j.cell.2020.02.058 Close 6VXX 10.2210/pdb6VXX/pdb 1281 6.09 0.982 0.968

Omicron
Nat Commun (2022) 13: 1214-1214 Open 7TGX 10.2210/pdb7TGX/pdb 1234 6.37 1.003 0.990

DOI: 10.1038/s41467-022-28882-9 Close 7TGY 10.2210/pdb7TGY/pdb 1234 6.37 1.003 0.990
1 Calculated by the ExPASy – ProtParam tool (https://web.expasy.org/protparam/).
2 https://www.rcsb.org/.
3 Assuming all pairs of cysteine residues form cystines.
4 Assuming all cysteine residues are reduced.
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Fig. S4 | (a) Illustration of the light transport on the surface of SARS-CoV-2 virion and (b) The simplified light transport model for analysis.
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the extinction coefficient of S protein was k. For normal incidence from the air, the reflected light part (R) could be ex-
pressed as5: 

R =
(n− 1)2 + k2

(n+ 1)2 + k2
, (S1)

where n is the real part of the complex refractive index. Thus, the transmitted part of the light (I1) can be expressed as: 

I1 = I0(1− R) = I0
(n+ 1)2 − (n− 1)2

(n+ 1)2 + k2
= I0

4n
(n+ 1)2 + k2

, (S2)

According to the thin-film optics theory, the light passes through the S protein to reach the M protein could be calcu-
lated by: I3= I0(1−R)2exp(−2ωdk/c), where ω is the angular frequency of light, d is the equivalent thickness of S protein,
and c is the speed of light in vacuum. Therefore, the k played an important modulation role in the incident of light get-
ting into the virus, and a larger k would lead to a reduction in the actual received dose of viral RNA chains.

 
 
5 Stenzel, O. Optical Coatings. (Springer Berlin, Heidelberg, 2014).
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