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  Section 1: Synthesis of Gain Materials

 General Information
All the reactants and reagents were commercially available and used as received unless otherwise stated. THF was puri-
fied by PURE SOLV (Innovative Technology) purification system. All reactions were monitored by thin layer chromato-
graphy (TLC). Column chromatography was performed over silica gel (200-300 mesh). NMR were measured in CDCl3
solutions by a Bruker AVANCEIII HD-400 NMR spectrometer at 298K with the internal standard of tetramethylsilane
(TMS).  Chemical  shifts  (δ)  are  recorded  in  parts  per  million  (ppm)  and  coupling  constants  (J)  are  reported  in  Hertz
(Hz).

 Synthetic Route
(E)-3-(4-(dimethylamino)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one  (HPMP),  (E)-3-(4-(diphenylamino)phenyl)-
1-(2-hydroxyphenyl)prop-2-en-1-one (HPPP) and (E)-1-(2-hydroxyphenyl)-3-(2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-
ij]quinolin-9-yl)prop-2-en-1-one (HPJP) were synthesized according to previously reported method (Scheme S1)S1.

(2E,2'E)-1,1'-(1,5-dimethoxynaphthalene-2,6-diyl)bis(3-(4-(dimethylamino)phenyl)prop-2-en-1-one)  (DMN-DMP),
(2E,2'E)-1,1'-(1,5-dimethoxynaphthalene-2,6-diyl)bis(3-(4-(diphenylamino)phenyl)prop-2-en-1-one)  (DMN-DPP),
(2E,2'E)-1,1'-(1,5-dimethoxynaphthalene-2,6-diyl)bis(3-(2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)prop-
2-en-1-one)  (DMN-DJP),  (2E,2'E)-1,1'-(1,5-dihydroxynaphthalene-2,6-diyl)bis(3-(4-(dimethylamino)phenyl)prop-2-
en-1-one) (DHN-DMP), (2E,2'E)-1,1'-(1,5-dihydroxynaphthalene-2,6-diyl)bis(3-(4-(diphenylamino)phenyl)prop-2-en-
1-one)  (DHN-DPP)  and  (2E,2'E)-1,1'-(1,5-dihydroxynaphthalene-2,6-diyl)bis(3-(2,3,6,7-tetrahydro-1H,5H-
pyrido[3,2,1-ij]quinolin-9-yl)prop-2-en-1-one) (DHN-DJP) were synthesized according to the synthetic route as shown
in Scheme S2. Compound 3 was synthesized according to previously reported workS2.

General method for the synthesis of DMNs.
In a 100 mL round-bottomed flask, a mixture of a mixture of compound 3 (1.0 mmol) and KOH (10 mmol) was dis-

solved in ethanol (10 mL). After stirring at room temperature for 1 h, compound 2 (2.0 mmol) was added. After stirring
at room temperature for another 10 h, the resulting mixture was poured into 100 mL water to give an orange precipitate.
The solid was filtered, washed with H2O (2 × 10 mL), dried under vacuum at 50 °C for 24 h. The result crude product
was subjected to silica gel flash chromatography, and the concentration of the appropriate fractions in vacuo afforded
DMN.
General method for the synthesis of DHNs.

A solution of DMN (0.5 mmol) in CH2Cl2 (50 mL) was treated at –78 °C dropwise with BBr3 (1.0 M in CH2Cl2, 2.5
mL,  2.5  mmol)  over  10  min and stirred for  1  h.  The reaction mixture  was  quenched with  saturated aq.  NaHCO3 (20
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mL).  The  organic  layer  was  separated  and  washed  with  H2O  (3  ×  20  mL)  and  brine  (20  mL),  dried  with  anhydrous
Na2SO4,  filtered  and  concentrated  under  reduced  pressure.  The  result  crude  product  was  subjected  to  silica  gel  flash
chromatography, and the concentration of the appropriate fractions in vacuo afforded ADH.

 Characterizations

HPJP:

Dark-red solid, yield: 83%.
1H NMR (400 MHz, CDCl3) δ 13.31 (s, 1H), 7.93 (dd, J = 8.0, 1.6 Hz, 1H), 7.84 (d, J = 15.2 Hz, 1H), 7.44 (ddd, J = 8.4,

7.2, 1.6 Hz, 1H), 7.38 (d, J = 15.2 Hz, 1H), 7.14 (s, 2H), 6.99 (dd, J = 8.4, 1.2 Hz, 1H), 6.90 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H),
3.27 (t, J = 6.0 Hz, 4H), 2.77 (t, J = 6.4 Hz, 4H), 2.03–1.92 (m, 4H).

13C NMR (100 MHz, CDCl3) δ 193.28, 163.48, 147.04, 145.76, 135.39, 129.29, 128.64, 121.32, 121.04, 120.56, 118.46,
118.44, 112.99, 50.01, 27.71, 21.49.

IR (cm−1) 3017, 2970, 2940, 2911, 2843, 1738, 1624, 1541, 1508, 1481, 1437, 1366, 1304, 1240, 1196, 1148, 1026, 976,
833, 814, 764, 658.

HRMS (ESI) m/z: [M+H]+ calculated for C21H22NO2+, 320.1645; found 320.1628.

DMN-DMP:

Orange-red solid, yield: 79%.
1H NMR (400 MHz, CDCl3) δ 8.07 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 15.6 Hz, 2H), 7.54 (d, J =

8.8 Hz, 4H), 7.34 (d, J = 15.6 Hz, 2H), 6.69 (d, J = 8.8 Hz, 4H), 3.97 (s, 6H), 3.05 (s, 12H).
13C NMR (100 MHz, CDCl3) δ 193.37, 155.83, 152.15, 146.29, 130.98, 130.62, 130.36, 126.73, 122.48, 121.40, 118.85,

111.85, 63.84, 40.13.
IR (cm−1) 2996, 2970, 2947, 1738, 1593, 1524, 1437, 1370, 1227, 1217, 1184, 1134, 1018, 980, 804, 675, 623.
HRMS (ESI) m/z: [M+H]+ calculated for C34H35N2O4+, 535.2591; found 535.2581.

DMN-DPP:

Orange-red solid, yield: 81%.
1H NMR (400 MHz, CDCl3) δ 8.06 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 16.0 Hz, 2H), 7.47 (d, J =

8.8 Hz, 4H), 7.40 (d, J = 16.0 Hz, 2H), 7.30 (td, J = 7.2, 2.0 Hz, 8H), 7.17–7.07 (m, 12H), 7.02 (d, J = 8.8 Hz, 4H), 3.96 (s, 6H).
13C NMR (100 MHz, CDCl3) δ 193.15, 156.19, 150.34, 146.76, 144.96, 131.15, 130.18, 129.92, 129.53, 127.60, 126.72,

125.54, 124.22, 123.67, 121.44, 119.01, 64.00.
IR (cm−1) 3026, 2970, 2943, 1740, 1580, 1483, 1371, 1350, 1267, 1217, 1065, 1032, 980, 820, 752, 694, 619.
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HRMS (ESI) m/z: [M+H]+ calculated for C54H43N2O4+, 783.3217; found 783.3198.
DMN-DJP:

Orange-red solid, yield: 75%.
1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 15.6 Hz, 2H), 7.24 (d, J =

15.6 Hz, 2H), 7.09 (s, 4H), 3.95 (s, 6H), 3.25 (t, J = 5.6 Hz, 8H), 2.74 (t, J = 6.4 Hz, 9H), 2.01–1.90 (m, 8H).
13C NMR (100 MHz, CDCl3) δ 193.33, 155.60, 146.89, 145.42, 130.85, 130.47, 128.38, 126.78, 121.38, 121.05, 120.29,

118.74, 63.72, 49.98, 27.69, 21.54.
IR (cm−1)  3015,  2970,  2928,  2839,  1738,  1643,  1546,  1510,  1435,  1371,  1314,  1204,  1161,  1065,  1028,  1009,  831,  812,

737, 689.
HRMS (ESI) m/z: [M+H]+ calculated for C42H43N2O4+, 639.3217; found 639.3210.

DHN-DMP:

Dark-red solid, yield: 56%.
1H NMR (400 MHz, CDCl3) δ 14.94 (s, 2H), 8.03 (d, J = 15.2 Hz, 2H), 7.96 (d, J = 15.2 Hz, 2H), 7.65 (d, J = 8.8 Hz,

4H), 7.60 (d, J = 14.8 Hz, 2H), 7.31 (d, J = 14.8 Hz, 2H), 6.75 (d, J = 8.8 Hz, 4H), 3.11 (s, 12H).
IR (cm−1) 3015, 2970, 2945, 2922, 2807, 1738, 1605, 1545, 1520, 1429, 1364, 1217, 1188, 1115, 974, 945, 903, 804, 698.
HRMS (ESI) m/z: [M+H]+ calculated for C32H31N2O4+, 507.2278; found 507.2271.
DHN-DPP:

Dark-red solid, yield: 79%.
1H NMR (400 MHz, CDCl3) δ 14.72 (s, 2H), 7.97 (d, J = 15.2 Hz, 2H), 7.94 (d, J = 8.4 Hz, 2H), 7.91 (d, J = 8.4 Hz, 2H),

7.62 (d, J = 15.2 Hz, 2H), 7.56 (d, J = 8.8 Hz, 4H), 7.36–7.29 (m, 8H), 7.20–7.11 (m, 12H), 7.05 (d, J = 8.8 Hz, 4H).
IR (cm−1) 3015, 2970, 2947, 1738, 1553, 1485, 1427, 1366, 1271, 1217, 1173, 1117, 974, 806, 754, 694, 617.
HRMS (ESI) m/z: [M+H]+ calculated for C52H39N2O4+, 755.2904; found 755.2875.

DHN-DJP:

Dark-red solid, yield: 61%.
1H NMR (400 MHz, CDCl3) δ 15.09 (s, 2H), 7.99–7.90 (m, 6H), 7.51 (d, J = 15.2 Hz, 2H), 7.21 (s, 4H), 3.31 (t, J = 5.6
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Hz, 8H), 2.82 (t, J = 6.4 Hz, 8H), 2.07–1.96 (m, 8H).
IR (cm−1) 3015, 2970, 2938, 2839, 1738, 1589, 1537, 1506, 1427, 1371, 1298, 1230, 1217, 1198, 1159, 1113, 1072, 1049,

974, 889, 835, 799, 729, 694.
HRMS (ESI) m/z: [M+H]+ calculated for C40H39N2O4+, 611.2904; found 611.2891.

  Section 2: Single crystal information
The crystal was obtained by slow evaporation of CH2Cl2/EtOH. Single-crystal XRD data were collected on a Bruker D8-
Venture diffractometer with a Turbo X-ray Source (Mo-Kα radiation, λ = 0.71073 A), adopting the direct drive rotating
anode technique and a CMOS detector at room temperature. The data frames were collected using the APEX2 program
and processed using the program SAINT routine in APEX2. Structures were solved by direct methods and refined by
the full-matrix least  squares on F2 using the SHELXTL-2014 program. Crystallographic data were compared with the
Cambridge  Crystallographic  Data  Center  supplementary  publication  no.  CCDC-2081135  (DHN-DMP),  no.  CCDC-
2236316 (DHN-DPP) and no. CCDC-2236314 (DHN-DJP).

  Section 3: Theoretical calculations
All density functional theory (DFT) calculations were performed by the Gaussian 16 programS3. The structures and en-
ergies were calculated at (TD)-wB97xD/6–31+G(d,p) levelS4−S7.  Imaginary frequencies were examined for all  transition
states. The Gibbs free energies were obtained from the frequency calculations.

  Section 4: Fabrication and characterization of PS films and microspheres
The fabrication of small molecule-doped PS films and microspheres is according to previously reported proceduresS8.

 Preparation of PS films
PS  films  were  prepared  by  drop-casting  from DHN/PS/DCM  solution.  First,  an  amount  of DHN and  10.0  mg  of  PS
were dissolved in 1 mL of DCM under stirring. Then, the solution was drop-cast onto quartz wafers in air. After total
evaporation of CH2Cl2, DHN:PS films (124 ± 9 μm) were obtained.

PS blend films with thicknesses range from 800 nm to 3 μm were prepared by spin-coating the DHN/PS/CHCl3 solu-
tion on quartz wafers in air, followed by a 5-min annealing at 100 °C. The thicknesses of the films were controlled by the
rotational speed during spin-coating.

 Preparation of PS microspheres
DHN-doped microspheres were prepared through an emulsion-solvent evaporation method.  In a  typical  preparation,
200 μL of well-mixed DHN/PS/DCM solution (0.5 mg/mL DHN and 50.0 mg/mL PS) was added to 2.0 mL of CTAB
aqueous solution (1.0 mg/mL), which was subsequently treated with vigorous stirring. After aging for 2 h, the DCM was
completely evaporated, and DHN-doped microspheres were obtained and dispersed in the colloid solution. The surfact-
ant CTAB was removed by filtration and washing. The precipitate was redispersed in the aqueous solution and used to
prepare samples  for  further  characterization  by  drop-casting.  The  diameter  of  the  obtained  sphere  can  be  well  con-
trolled by changing the concentration of PS.

Same methods were adopted in the preparation of other compounds doped PS films and microspheres.

 Characterizations of well-prepared PS microspheres
Microscopy images were obtained using a Leica DMRBE fluorescence microscope with a spot-enhanced charge couple
device  (CCD,  Diagnostic  Instrument,  Inc.).  Field-emission  scanning  electron  microscopy  (FESEM)  image  of  the
samples were observed using an FESEM (Carl Zeiss, Supra 55).

  Section 5: Optical characterizations
Ultraviolet-visible absorption spectra were measured by a Shimadzu UV-2600 spectrophotometer. Photoluminescence
spectra  were  measured  by  a  Horiba  JY  FL-3  fluorescence  spectrophotometer  (NIR-VIS,  FL3).  Absolute  PL  quantum
yields  (PLQY)  were  measured  on  a  Quantaurus-QY  measurement  system  (C11347-11,  Hamamatsu  Photonics).  The
transient  PL  decay  characteristics  were  recorded  using  a  Quantaurus-Tau  fluorescence  lifetime  measurement  system
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(C11367-03, Hamamatsu Photonics).
A  homemade  micro-photoluminescence  (μ-PL)  system  (Fig. S12)  was  used  to  measure  μ-PL  spectra.  The  samples

were excited by a 532 nm pump laser (repetition rate = 10 Hz; pulse duration = 10 ns) passing a 532 nm notch filter. The
minimum diameter of light spot is 50 μm and the size is adjustable. Then, the fluorescence from samples was collected
into a grating spectrometer (Princeton Instrument,  ARC-SP-2356) and detected by a thermal-electrically cooled CCD
(Princeton Instruments, PIX-256E). Microscopy images were taken with an inverted microscope (Olympus, BX43).

  Section 6: Supporting Figures
 

Fig. S1 | Single crystal structure of DHN-DMP.

 

Fig. S2 | Single crystal structure of DHN-DPP.

 

Fig. S3 | Single crystal structure of DHN-DJP.
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Fig. S7 | Emission spectra for PLQY measurements in PS films.
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Fig. S12 | The bright-field image of a selected single microsphere.
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  Section 7: Supporting Tables
 

Table S1 | The summary of the parameters of DHN-DMP unit cell.
 

Formula C32H30N2O4

Formula weight 506.58

Crystal system triclinic

Space group P −1

a (Å) 5.1154(4)

b (Å) 11.8779(9)

c (Å) 12.1137(10)

α (°) 116.915(4)

β (°) 102.128(2)

γ (°) 92.562(3)

V (Å) 633.35

Cell formula units, Z, Z' Z: 1, Z': 0.5

R factor (%) 5.23

 
Table S2 | The summary of the parameters of DHN-DPP unit cell.

 

Formula C52H38N2O4

Formula weight 924.69

Crystal system triclinic

Space group P −1

a (Å) 9.6001(2)

b (Å) 10.5402(3)

c (Å) 23.3855(6)

α (°) 102.7450(10)

β (°) 92.9740(10)

γ (°) 101.5650(10)

V (Å) 2249.68

Cell formula units, Z, Z' Z: 2, Z': 1

R factor (%) 7.14

 
Table S3 | The summary of the parameters of DHN-DJP unit cell.

 

Formula C40H38N2O4

Formula weight 610.72

Crystal system monoclinic

Space group P 21/c

a (Å) 8.4182(2)

b (Å) 11.1467(3)

c (Å) 15.8142(4)

α (°) 90

β (°) 95.282(2)

γ (°) 90

V (Å) 1477.63

Cell formula units, Z, Z’ Z: 2, Z': 0.5

R factor (%) 4.89
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Table S4 | Statistics analyses of the fitting curves of decay plots of DHNs in Figure 3.

 

Reduced Chi square Residual sum of square R-square (COD)
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