DOI: 10.29026/oea.2023.220034

# Switching of K-Q intervalley trions fine structure and their dynamics in n-doped monolayer WS<sub>2</sub>

Jiajie Pei<sup>1,2</sup>, Xue Liu<sup>3</sup>, Andrés Granados del Águila<sup>3</sup>, Di Bao<sup>3</sup>, Sheng Liu<sup>3</sup>, Mohamed-Raouf AMARA<sup>3</sup>, Weijie Zhao<sup>3</sup>, Feng Zhang<sup>1</sup>, Congya You<sup>4</sup>, Yongzhe Zhang<sup>4</sup>, Kenji Watanabe<sup>5</sup>, Takashi Taniguchi<sup>5</sup>, Han Zhang<sup>1\*</sup> and Qihua Xiong<sup>6\*</sup>

<sup>1</sup>Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; <sup>2</sup>College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; <sup>3</sup>Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore; <sup>4</sup>College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China; <sup>5</sup>Research Center for Functional Materials, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan; <sup>6</sup>State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China. \*Correspondence: H Zhang, E-mail: hzhang@szu.edu.cn; QH Xiong, E-mail: qihua\_xiong@tsinghua.edu.cn

# This file includes:

Section 1: Thermal dynamic of neutral and charged excitons Section 2: Distribution of trions at different doping density

Supplementary information for this paper is available at https://doi.org/10.29026/oea.2023.220034



**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023. Published by Institute of Optics and Electronics, Chinese Academy of Sciences.



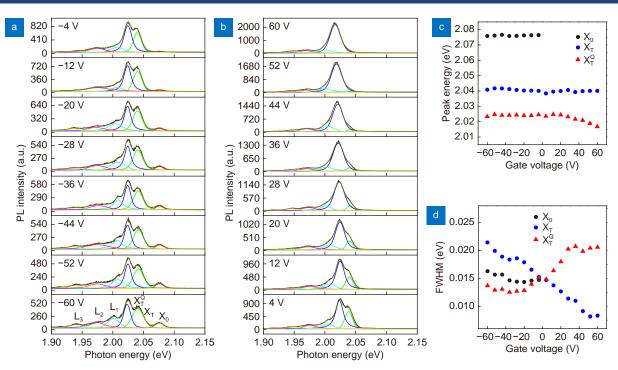
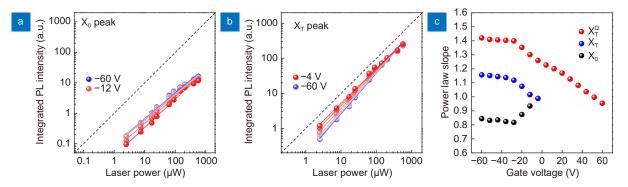




Fig. S1 | Fitting result of the gate-dependent PL spectra of the monolayer WS<sub>2</sub> taken at 10 K with a 25  $\mu$ W excitation power. (a) Fitting result of the PL spectra from -60 V to -4 V back gate voltages with Voigt function. (b) Fitting result of the PL spectra from 4 V to 60 V back gate voltages with Voigt function. (c) PL peak energy of X<sub>0</sub>, X<sub>T</sub>, and X<sub>T</sub><sup>Q</sup> emissions as a function of gate voltages. (d) Full width at half maximum (FWHM) of X<sub>0</sub>, X<sub>T</sub> and X<sub>T</sub><sup>Q</sup> emissions as a function of gate voltages.



**Fig. S2** | **Power-law slope of X<sub>0</sub>, X<sub>T</sub> and X<sub>0</sub><sup>Q</sup> at different back gate voltages.** (a) Log-log plot of the integrated PL intensity for X<sub>0</sub> peak as a function of excitation power from -60 V to -12 V. Note that the X<sub>0</sub> peak could not be observed at gate from -4 V to 60 V. (b) Log-log plot of the integrated PL intensity for X<sub>T</sub> peak as a function of excitation power from -60 V to -4 V. Note that the X<sub>1</sub> peak could not be observed at gate from 4 V to 60 V. (b) Log-log plot of the integrated PL intensity for X<sub>T</sub> peak as a function of excitation power from -60 V to -4 V. Note that the X<sub>T</sub> peak could not be observed at gate from 4 V to 60 V. (c) Statistics of the power law slope for X<sub>0</sub>, X<sub>T</sub> and X<sub>T</sub><sup>Q</sup> at each gate voltage. Note that the X<sub>0</sub> and X<sub>T</sub> peak was too weak to be resolved at low powers and positive back-gate voltages.

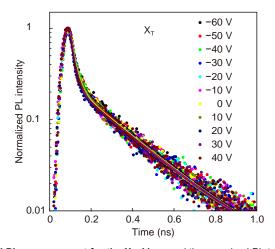
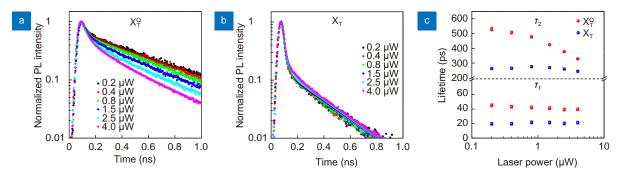




Fig. S3 | Gate-dependent time-resolved PL measurement for the  $X_T$ . Measured time-resolved PL traces (dots) and corresponding double exponential fitting (solid curves) for the  $X_T$  at different back-gate voltages (from -60 V to 40 V). The signal was too weak to be detected when the back-gate voltage exceeded 40 V.



**Fig. S4 | Excitation power-dependent time-resolved PL measurement for the X**<sub>T</sub> and X<sup>Q</sup><sub>T</sub>. (a) Measured time-resolved PL traces (dots) and corresponding double exponential fitting (solid curves) for the  $X^Q_T$  at different excitation laser powers (from 0.2 µW to 4 µW). (b) Measured time-resolved PL traces (dots) and corresponding double exponential fitting (solid curves) for the  $X^Q_T$  at different excitation laser powers. (c) The statistical values of the fast decay lifetime  $r_1$  and slow decay lifetime  $r_2$  for the fitting results of  $X_T$  and  $X^Q_T$  at different excitation laser powers.

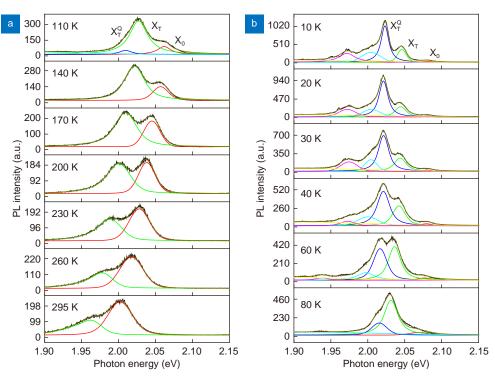



Fig. S5 | Fitting result of the temperature-dependent PL spectra of the monolayer WS<sub>2</sub>. (a) Fitting results of the PL spectra from 295 K to 110 K temperatures with Voigt function. (b) Fitting results of the PL spectra from 80 K to 10 K temperatures with Voigt function.

# Section 1: Thermal dynamic of neutral and charged excitons

Firstly, we determine the relative intensity of the neutral and charged excitonic species based on the Mass action model<sup>S1</sup>. From charge conservation of the photoexcited electrons and holes, the concentration of neutral states ( $n_x$ ), charged states ( $n_x$ -), free electrons ( $n_e$ ), laser intensity ( $n_p$ ), and doping level ( $n_B$ ) have the following relationship:

$$n_{\rm P} = n_{\rm X} + n_{{\rm X}^-} ,$$
  
 $n_{\rm B} = n_{\rm e} + n_{{\rm X}^-} ,$   
 $n_{\rm X} + 2n_{{\rm X}^-} = n_{\rm P} + n_{\rm B} .$ 

Then, the equilibrium populations for the species are governed by the Saha equation:

 $n_{\rm e}$  +

$$\frac{n_{\rm X}n_{\rm e}}{n_{\rm X^-}} = Ak_{\rm B}T\exp\left(-\frac{E_{\rm T}}{k_{\rm B}T}\right) = n_{\rm A}$$

where  $k_{\rm B}$  is Boltzmann constant, *T* is the temperature,  $E_{\rm T}$  is the trion binding energy,  $A = \frac{4M_{\rm X}m_{\rm e}}{\pi\hbar^2 M_{\rm X^-}} \approx 6.18 \times 10^{11}$ ,  $n_{\rm A}$  represents the temperature dependent equilibrium constant.

Solving the above equations gives:

$$\left( egin{array}{l} n_{
m X} = rac{1}{2} \left( n_{
m P} - n_{
m B} - n_{
m A} + \sqrt{\left( n_{
m P} + n_{
m B} + n_{
m A} 
ight)^2 - 4 n_{
m P} n_{
m B}} 
ight) \ n_{
m X^-} = rac{1}{2} \left( n_{
m P} + n_{
m B} + n_{
m A} - \sqrt{\left( n_{
m P} + n_{
m B} + n_{
m A} 
ight)^2 - 4 n_{
m P} n_{
m B}} 
ight)$$

This fits well with a two-level system such as the monolayer MoSe<sub>2</sub><sup>S1</sup>. However, due to the existence of dark states in the monolayer WS<sub>2</sub>, both their populations will split into substructures:

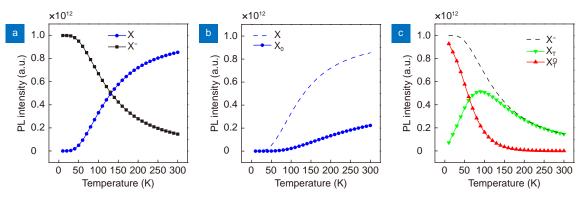
$$n_{
m X} = n_{
m X_0} + n_{
m X_D} \; ,$$
  
 $n_{
m X^-} = n_{
m X_T} + n_{
m X_2^Q} \; ,$ 

where  $n_{X_0}$  represents the bright exciton,  $n_{X_D}$  represents the dark exciton,  $n_{X_T}$  and  $n_{X_T^Q}$  represent the two types of charged excitons, respectively. Resulting from the difference of energy levels between two states, their concentrations are

governed by the Boltzmann distribution<sup>S2</sup>:

$$n_{X_0} = n_X \frac{\exp\left(-\frac{\Delta_1}{k_B T}\right)}{1 + \exp\left(-\frac{\Delta_1}{k_B T}\right)} \text{const}$$
$$n_{X_T} = n_{X^-} \frac{\exp\left(-\frac{\Delta_2}{k_B T}\right)}{1 + \exp\left(-\frac{\Delta_2}{k_B T}\right)} \text{const}$$

where  $\Delta_1$  represents the energy difference between two exciton levels,  $\Delta_2$  represents the energy difference between two trion levels.


At elevated temperatures, the value of Q-K valley energy difference ( $\Delta E_{QK}$ ) changes mainly due to the thermalization induced band renormalization<sup>S3</sup> that switches the population of X<sub>T</sub> and  $X_T^Q$ . Thus, the concentration of X<sub>T</sub> should be corrected with a temperature-related function  $\Delta E_{QK}$  and becomes:

$$n_{X_{T}} = n_{X^{-}} \frac{\exp\left(-\frac{\Delta_{2} - \Delta E_{QK}}{k_{B}T}\right)}{1 + \exp\left(-\frac{\Delta_{2} - \Delta E_{QK}}{k_{B}T}\right)} \text{const}$$

and the population of  $X_T^Q$  becomes:

$$n_{\mathrm{X}_{\mathrm{T}}^{\mathrm{Q}}} = n_{\mathrm{X}^{-}} \frac{1}{1 + \exp\left(-\frac{\Delta_{2} - \Delta E_{\mathrm{QK}}}{k_{\mathrm{B}}T}\right)} \operatorname{const},$$

based on the conservation of total population  $n_{X^-} = n_{X_T} + n_{X_T^Q}$ . The  $\Delta E_{QK}$  could be fit to a function  $\Delta E_{QK} = a + b(k_B T)^2$ , where *a* and *b* were fit to 15 and 0.24, respectively. The calculated results are shown in the figure below.

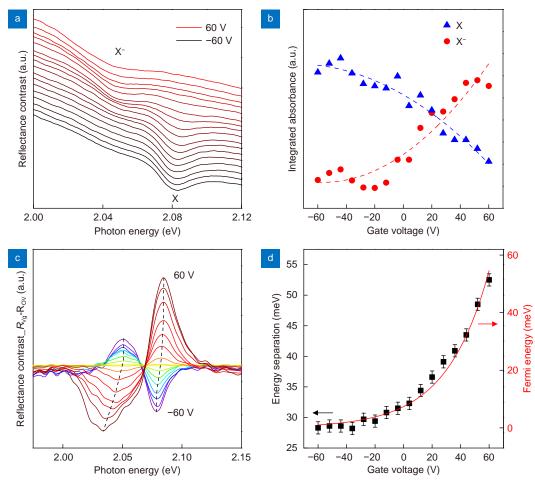


**Fig. S6 | Calculated temperature-dependent PL intensity for the emission species. (a)** The population of neutral and charged states without energy splitting. (b) The population of bright exciton (blue circle line) and the original neutral exciton (blue dashed line). (c) The population of  $X_T$  and  $X_T^Q$  (green and red lines) splitted from the original negatively charged exciton (black dashed line). The amount of absorbed photons is set as  $1 \times 10^{12}$  cm<sup>-2</sup> for calculation, with an initial doping level  $1 \times 10^{12}$  cm<sup>-2</sup>.

# Section 2: Distribution of trions at different doping density

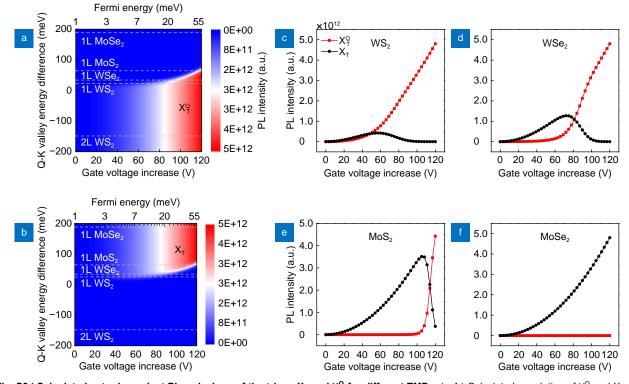
The Fermi energy ( $E_F$ ) increases as the doping density is increased <sup>4</sup>, and the concentration of Q valley electrons increases accordingly. The formation of Q-valley trion relies on the relative position between the Fermi energy and the Q valley energy level. When the Q valley energy level changes, the proportion of trions changes accordingly. We set the initial Fermi level at the bottom of the K valley, then the relative position between the Fermi energy and the Q valley energy level becomes:  $\Delta E_F - \Delta E_{QK}$ , where  $\Delta E_{QK}$  is the Q-K valley energy difference,  $\Delta E_F$  is the change of Fermi energy as a function of back-gate voltage. Then, the proportion of X<sub>T</sub> and X<sub>T</sub><sup>Q</sup> as a function of gate voltage increase could be calculated based on the Boltzmann distribution:

$$rac{n_{X_{\mathrm{T}}}}{n_{\mathrm{X}_{\mathrm{T}}}} = \exp\left(-rac{\Delta_2+\Delta E_{\mathrm{F}}-\Delta E_{\mathrm{QK}}}{k_{\mathrm{B}}T}
ight) \; ,$$


with the addition of hole conservation relationship:  $n_{X_T} + n_{X_T^Q} = n_{X^-}$ , we have:

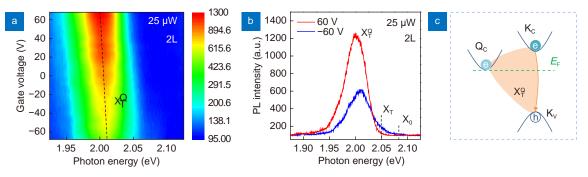
$$\begin{cases}
n_{X_{T}} = n_{X^{-}} \frac{\exp\left(-\frac{\Delta_{2} + \Delta E_{F} - \Delta E_{QK}}{k_{B}T}\right)}{1 + \exp\left(-\frac{\Delta_{2} + \Delta E_{F} - \Delta E_{QK}}{k_{B}T}\right)} \text{const} \\
n_{X_{T}^{Q}} = n_{X^{-}} \frac{1}{1 + \exp\left(-\frac{\Delta_{2} + \Delta E_{F} - \Delta E_{QK}}{k_{B}T}\right)} \text{const}
\end{cases}$$

Here  $\Delta_2$  is energy difference of two types of trions at zero doping.


The Fermi energies at different doping density are estimated based on the energy separation ( $\Delta E_{X-T}$ ) between neutral (X) and charged state (X<sup>-</sup>). According to the energy and momentum conservation relationship of X and X<sup>-</sup> in ref<sup>84</sup>, we have  $\Delta E_{X-X^-} = \Delta E_{X^-}^0 + \alpha \Delta E_F$ , where  $\Delta E_{X^-}^0$  is the energy separation of X and X<sup>-</sup> at zero doping,  $\alpha$  is a constant. Here in our estimation, the calculated curves match well with the experimental data (main Fig. 2(c)) when the  $\alpha$ =0.5. Thus, we have  $\Delta E_F = 2(\Delta E_{X-X^-} - \Delta E_{X^-}^0)$ . The Fermi energy as a function of gate voltage is shown below.

According to the gate sweep, the back gate induced carrier density doping *n* can be estimated using the parallel-plate




**Fig. S7 | gate-dependent reflectance contrast spectra of monolayer WS**<sub>2</sub> **at 7=10 K. (a)** Reflectance contrast spectra for the monolayer WS<sub>2</sub> at 10 K with back gate voltages from –60 V to 60 V. The spectra are vertically shifted for clarity. (b) Integrated absorbance for the neutral and charged states. The dashed lines are fitting curves showing the trend. (c) The relative reflectance contrast spectra by subtracting the 0 V spectrum ( $R_{0V}$ ) at each gate voltage ( $R_{Vg}$ ) from (a). The peak intensities of the spectra are vertically expanded for clarity. (d) Energy separation of X and X<sup>-</sup> at different gate voltages extracted from (c). The red curve is exponential fit with *y*=7.39e<sup>0.033x</sup> for the Fermi energy at each gate voltage.

capacitor model  $n = C_{ox} (V_{bg} - V_{bg,th}) / e$ , where  $V_{bg}$  is the back gate voltage,  $V_{bg,th}$  is the threshold voltage, e is the unit charge,  $C_{ox}$  is the dielectric capacitance per unit area, which could be calculated from  $C_{ox} = \varepsilon_0 \varepsilon_r / d_{ox}$ , where  $\varepsilon_0$  is the dielectric constant of vacuum,  $\varepsilon_r$  is the relative dielectric constant (3.9) of SiO<sub>2</sub>,  $d_{ox}$  is the thickness (300 nm) of SiO<sub>2</sub>. The carrier density is estimated to be ~0.7×10<sup>12</sup> cm<sup>-2</sup> per 10 V. The transition trend of gate-dependent neutral and charged excitons used for the calculation is based on the fitting curves in Fig. S7(b) with the order of magnitude 10<sup>12</sup> cm<sup>-2</sup>. The amount of absorbed photons is set as 6×10<sup>12</sup> cm<sup>-2</sup> for calculation. The initial doping level is set as 1×10<sup>12</sup> cm<sup>-2</sup>. For the calculation in Fig. S8, the energy range of  $\Delta E_{QK}$  is set from -200 to 200 meV, and the change of Fermi energy is from 0 to 60 meV. The Fermi level at zero gate voltage is set to at the bottom of the conduction band edge. For the Q valley energy levels of different TMDs, the  $\Delta E_{QK}$  could be extracted from the density functional theory calculation<sup>S5</sup>, as indicated in Fig. S8(a, b) with dashed lines. The cross-sections of the image are shown in Fig. S8(c-f), which agrees well with the experimental observations. It should be noted that for a sample with high initial doping, the population of trions would not be zero even applied with -60 V gate voltage, which is the case of our sample shown in main Fig. 2(c).



**Fig. S8 | Calculated gate-dependent PL emissions of the trions**  $X_T$  **and**  $X_T^q$  **for different TMDs. (a, b)** Calculated population of  $X_T^q$  and  $X_T$  as a function of gate voltage and the Q-K valley energy difference. The four types of TMDs with different Q-K valley splitting energies are indicated with dashed lines. (c–f) The transition curves of the  $X_T^q$  and  $X_T$  as a function of gate voltage at the cross sections in (a) and (b). We found that the calculated result for 1L WSe<sub>2</sub> is in good agreement with the experimental result in Ref <sup>6</sup>. For 1L MoS<sub>2</sub> and MoSe<sub>2</sub>, the Q valleys have higher energy level that are more difficult to access by back gate tuning.





**Fig. S9** | **Gate-dependent PL spectra of a bilayer WS<sub>2</sub>**. (a) Color plot of the measured PL spectra for bilayer WS<sub>2</sub> as a function of back gate voltage at 25  $\mu$ W excitation power at 10 K. The dashed line is guide to the eye showing the position of the emission peak. (b) PL spectra of bilayer WS<sub>2</sub> at –60 V and 60 V back gate voltage. (c) Schematic illustration of the Q-K valley energy difference for the bilayer WS<sub>2</sub> and the corresponding carrier relaxation pathways.

# References

- S1. Ross JS, Wu SF, Yu HY, Ghimire NJ, Jones AM et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. *Nat Commun* 4, 1474 (2013).
- S2. Zhang XX, You YM, Zhao SYF, Heinz TF. Experimental evidence for dark excitons in monolayer WSe<sub>2</sub>. Phys Rev Lett 115, 257403 (2015).
- S3. Peng GH, Lo PY, Li WH, Huang YC, Chen YH et al. Distinctive signatures of the spin- and momentum-forbidden dark exciton states in the photoluminescence of strained WSe<sub>2</sub> monolayers under thermalization. *Nano Lett* **19**, 2299–2312 (2019).
- S4. Chernikov A, Van Der Zande AM, Hill HM, Rigosi AF, Velauthapillai A et al. Electrical tuning of exciton binding energies in monolayer WS<sub>2</sub>. Phys Rev Lett **115**, 126802 (2015).
- S5. Roldán R, Silva-Guillén JA, López-Sancho MP, Guinea F, Cappelluti E et al. Electronic properties of single-layer and multilayer transition metal dichalcogenides MX<sub>2</sub> (M = Mo, W and X = S, Se). Ann Phys 526, 347–357 (2014).
- Jones AM, Yu HY, Ghimire NJ, Wu SF, Aivazian G et al. Optical generation of excitonic valley coherence in monolayer WSe<sub>2</sub>. Nat Nanotechnol 8, 634–638 (2013).