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Fig. S1 | Fitting result of the gate-dependent PL spectra of the monolayer WS2 taken at 10 K with a 25 μW excitation power. (a) Fitting

result of the PL spectra from –60 V to –4 V back gate voltages with Voigt function. (b) Fitting result of the PL spectra from 4 V to 60 V back gate

voltages  with  Voigt  function.  (c)  PL  peak  energy  of  X0,  XT,  and  emissions  as  a  function  of  gate  voltages.  (d)  Full  width  at  half  maximum

(FWHM) of X0, XT and  emissions as a function of gate voltages.
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Fig. S2 | Power-law slope of X0,  XT and  at different back gate voltages. (a)  Log-log plot of the integrated PL intensity for X0 peak as a

function of excitation power from –60 V to –12 V. Note that the X0 peak could not be observed at gate from –4 V to 60 V. (b) Log-log plot of the

integrated PL intensity for XT peak as a function of excitation power from –60 V to –4 V. Note that the XT peak could not be observed at gate from

4 V to 60 V. (c) Statistics of the power law slope for X0, XT and  at each gate voltage. Note that the X0 and XT peak was too weak to be re-

solved at low powers and positive back-gate voltages.
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Fig. S3 | Gate-dependent time-resolved PL measurement for the XT. Measured time-resolved PL traces (dots) and corresponding double ex-

ponential fitting (solid curves) for the XT at different back-gate voltages (from –60 V to 40 V). The signal was too weak to be detected when the

back-gate voltage exceeded 40 V.
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Fig. S4 | Excitation power-dependent time-resolved PL measurement for the XT and . (a) Measured time-resolved PL traces (dots) and

corresponding double exponential fitting (solid curves) for the  at different excitation laser powers (from 0.2 μW to 4 μW). (b) Measured time-

resolved PL traces (dots) and corresponding double exponential fitting (solid curves) for the XT at different excitation laser powers. (c) The statist-

ical values of the fast decay lifetime τ1 and slow decay lifetime τ2 for the fitting results of XT and  at different excitation laser powers.
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  Section 1: Thermal dynamic of neutral and charged excitons

nX
nX− ne nP nB

Firstly,  we  determine  the  relative  intensity  of  the  neutral  and  charged  excitonic  species  based  on  the  Mass  action
modelS1.  From  charge  conservation  of  the  photoexcited  electrons  and  holes,  the  concentration  of  neutral  states  ( ),
charged states ( ), free electrons ( ), laser intensity ( ), and doping level ( ) have the following relationship: 

nP = nX + nX− ,
 

nB = ne + nX− ,
 

ne + nX + 2nX− = nP + nB .
Then, the equilibrium populations for the species are governed by the Saha equation: 

nXne
nX−

= AkBTexp
(
− ET

kBT

)
= nA ,

A =
4MXme

πℏ2MX−
≈ 6.18× 1011where kB is  Boltzmann constant, T is  the  temperature, ET is  the  trion binding energy, , nA

represents the temperature dependent equilibrium constant.
Solving the above equations gives:  

nX =
1
2

(
nP − nB − nA +

√
(nP + nB + nA)2 − 4nPnB

)
nX− =

1
2

(
nP + nB + nA −

√
(nP + nB + nA)2 − 4nPnB

) .

This fits well with a two-level system such as the monolayer MoSe2S1. However, due to the existence of dark states in
the monolayer WS2, both their populations will split into substructures: 

nX = nX0 + nXD ,
 

nX− = nXT + nXQT ,

nX0 nXD nXT nXQTwhere  represents the bright exciton,  represents the dark exciton,  and  represent the two types of charged
excitons,  respectively.  Resulting  from  the  difference  of  energy  levels  between  two  states,  their  concentrations  are
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Fig. S5 | Fitting result of the temperature-dependent PL spectra of the monolayer WS2. (a) Fitting results of the PL spectra from 295 K to

110 K temperatures with Voigt function. (b) Fitting results of the PL spectra from 80 K to 10 K temperatures with Voigt function.
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governed by the Boltzmann distributionS2:  

nX0 = nX
exp

(
− Δ1

kBT

)
1+ exp

(
− Δ1

kBT

)const

nXT = nX−

exp
(
− Δ2

kBT

)
1+ exp

(
− Δ2

kBT

)const

,

where Δ1 represents the energy difference between two exciton levels, Δ2 represents the energy difference between two
trion levels.

XQ
T

At elevated temperatures, the value of Q-K valley energy difference (ΔEQK) changes mainly due to the thermalization
induced  band renormalizationS3 that  switches  the  population  of  XT and .  Thus,  the  concentration  of  XT should  be
corrected with a temperature-related function ΔEQK and becomes: 

nXT = nX−

exp
(
−
Δ2 − ΔEQK

kBT

)
1+ exp

(
−
Δ2 − ΔEQK

kBT

)const ,

XQ
Tand the population of  becomes: 

nXQ
T
= nX−

1

1+ exp
(
−
Δ2 − ΔEQK

kBT

)const ,

nX− = nXT + nXQ
T

based on the conservation of total population . The ΔEQK could be fit to a function ΔEQK = a+b(kBT)2,
where a and b were fit to 15 and 0.24, respectively. The calculated results are shown in the figure below.

  Section 2: Distribution of trions at different doping density

ΔEF − ΔEQK ΔEQK ΔEF

XQ
T

The  Fermi  energy  (EF)  increases  as  the  doping  density  is  increased 4, and  the  concentration  of  Q valley  electrons  in-
creases accordingly. The formation of Q-valley trion relies on the relative position between the Fermi energy and the Q
valley energy level.  When the Q valley energy level  changes,  the proportion of  trions changes accordingly.  We set  the
initial Fermi level at the bottom of the K valley, then the relative position between the Fermi energy and the Q valley en-
ergy level becomes: , where  is the Q-K valley energy difference,  is the change of Fermi energy as a
function of back-gate voltage. Then, the proportion of XT and  as a function of gate voltage increase could be calcu-
lated based on the Boltzmann distribution:
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Fig. S6 | Calculated temperature-dependent PL intensity for the emission species. (a) The population of neutral and charged states without

energy splitting. (b) The population of bright exciton (blue circle line) and the original neutral exciton (blue dashed line). (c) The population of XT

and  (green and red lines) splitted from the original negatively charged exciton (black dashed line). The amount of absorbed photons is set as

1×1012 cm–2 for calculation, with an initial doping level 1×1012 cm–2.
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nXT
nXQ

T

= exp
(
−
Δ2 + ΔEF − ΔEQK

kBT

)
,

nXT + nXQ
T
= nX−with the addition of hole conservation relationship: , we have:

  

nXT = nX−

exp
(
−
Δ2 + ΔEF − ΔEQK

kBT

)
1+ exp

(
−
Δ2 + ΔEF − ΔEQK

kBT

)const

nXQ
T
= nX−

1

1+ exp
(
−
Δ2 + ΔEF − ΔEQK

kBT

)const

,

Δ2Here  is energy difference of two types of trions at zero doping.
ΔEX−T

ΔEX−X− = ΔE0
X− + αΔEF ΔE0

X−

ΔEF = 2(ΔEX−X− − ΔE0
X−)

The Fermi energies at different doping density are estimated based on the energy separation ( ) between neutral
(X) and charged state (X–). According to the energy and momentum conservation relationship of X and X– in refS4, we
have , where  is the energy separation of X and X− at zero doping, α is a constant. Here in
our estimation, the calculated curves match well with the experimental data (main Fig. 2(c)) when the α=0.5. Thus, we
have . The Fermi energy as a function of gate voltage is shown below.

According to the gate sweep, the back gate induced carrier density doping n can be estimated using the parallel-plate
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Fig. S7 | gate-dependent reflectance contrast spectra of monolayer WS2 at T=10 K. (a) Reflectance contrast spectra for the monolayer WS2

at 10 K with back gate voltages from –60 V to 60 V. The spectra are vertically shifted for clarity. (b) Integrated absorbance for the neutral and

charged states. The dashed lines are fitting curves showing the trend. (c) The relative reflectance contrast spectra by subtracting the 0 V spec-

trum (R0V) at each gate voltage (RVg) from (a). The peak intensities of the spectra are vertically expanded for clarity. (d) Energy separation of X

and X– at different gate voltages extracted from (c). The red curve is exponential fit with y=7.39e0.033x for the Fermi energy at each gate voltage.
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n = Cox (Vbg − Vbg,th) /e
Cox = ε0εr/dox

ΔEQK

ΔEQK

capacitor model , where Vbg is the back gate voltage, Vbg,th is the threshold voltage, e is the unit
charge, Cox is  the  dielectric  capacitance  per  unit  area,  which  could  be  calculated  from ,  where ε0 is  the
dielectric constant of vacuum, εr is  the relative dielectric constant (3.9) of SiO2, dox is  the thickness (300 nm) of SiO2.
The  carrier  density  is  estimated  to  be  ~0.7×1012 cm–2 per  10  V.  The  transition  trend  of  gate-dependent  neutral  and
charged excitons used for  the calculation is  based on the fitting curves  in Fig. S7(b) with the order  of  magnitude 1012

cm–2. The amount of absorbed photons is set as 6×1012 cm–2 for calculation. The initial doping level is set as 1×1012 cm–2.
For the calculation in Fig. S8, the energy range of  is set from –200 to 200 meV, and the change of Fermi energy is
from 0 to 60 meV. The Fermi level at zero gate voltage is set to at the bottom of the conduction band edge. For the Q
valley energy levels of different TMDs, the  could be extracted from the density functional theory calculationS5, as
indicated in Fig. S8(a, b) with dashed lines. The cross-sections of the image are shown in Fig. S8(c–f), which agrees well
with the experimental observations. It should be noted that for a sample with high initial doping, the population of tri-
ons would not be zero even applied with –60 V gate voltage, which is the case of our sample shown in main Fig. 2(c).
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