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  Section 1 Electrical properties of pyroelectric PMN-PT

Before performing the short-circuit current test, both sides of the ferroelectric PMN-PT were coated with a thin silver
film as electrodes using a vacuum thermal vaporizer (VZZ-300S, Beijing, China) with a deposition thickness of 10 nm
and a deposition rate of 0.2 Å/s. SPI silver conductive paint (purchased from Wuhan Vacuum Tesco Trading Co., Ltd.)
was used to fix two gold wires (the length of 10 cm; the diameter of 0.1 mm) to the surface of the upper and lower silver
electrodes, respectively. The gold wires were then connected to a three-electrode electrochemical workstation (CH In-
struments Ins., CHI760E). The working electrode (green) was linked to the upper silver electrode; the counter electrode
(red) was linked to the lower silver electrode together with the auxiliary electrode (white), as shown in Fig. S1(a). Sub-
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Fig. S1 | (a, c) Schematic diagram and (b, d) measured short-circuit current of pyroelectric PMN-PT at (a, b) forward connection and (c, d) re-

versed connection to the measurement system when the temperature changes from 20 to 100 °C (dT/dt > 0) and 100 to 20 °C (dT/dt < 0).
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sequently, the Ag/PMN-PT/Ag sample was placed on a temperature console (LINKAM THMS600) to provide the tem-
perature fluctuations. As the temperature of the sample increases from 20 to 100 °C (dT/dt > 0), a positive current is de-
tected (Fig. S1(b)), indicating that the current flows from the counter electrode to the workstation (electrons flow from
the  working  electrode  to  the  workstation).  The  amplitude  of  the  vibration  of  the  electric  dipole  inside  the  PMN-PT
along the central axis of symmetry becomes larger due to the increase in temperature leading to the weakening of the
polarization of the PMN-PT. The weak electrostatic induction of PMN-PT to the charge in the two electrodes leads to
the redistribution through the external  circuit  to  achieve a  new electrostatic  balance.  Notely,  the direction of  electron
migration at this point is  from the upper silver electrode into the working electrode (a positive current).  Therefore,  it
can be determined that the direction of polarization inside the PMN-PT is upward (from negative bound charge to pos-
itive bound charge). On the contrary, as the temperature of the sample decreases from 20 to 100 °C (dT/dt < 0), the vi-
brational amplitude of the electric dipole decreases, leading to an increase in the polarization intensity. The electrostatic
balance is broken again, and the direction of electron migration at this point is from the working electrode into the up-
per silver electrode (a negative current) to reach a new stable state. Such wiring is called a forward connection. However,
if a reversed connection is executed, the obtained current signals are switched in sign due to the reversal of the polariza-
tion direction of the PMN-PT with respect to the loop, as shown in Fig. S1(c) and S1(d).

  Section 2 Calculation of the enhancement factor

The enhancement factor (EF) was calculated using the following formula: 

EF =
ISERS × NRaman

IRaman × NSERS
, (S1)

ISERS IRaman NRaman NSERSwhere , ,  and  represent  the  SERS  signal  intensity  of  coating  GO,  the  Raman  signal  intensity  of
without coating GO, the number of probe molecule within laser spot on the substrate of without coating GO and the
number of probe molecule within laser spot on the substrate of coating GO, respectively. The Raman spectrometer was
all used under the condition (0.58 mW laser power, ×50 objective lens and 1 μm the laser spot). 5 μL R6G solution was
dropped on the substrate, and the estimated diameter after drying was about 4 mm. The average areal density (AD) of
R6G can be estimated by the following equation: AD = CVN/S, where C, V, N and S refer to the concentration of R6G,
the volume of dropped R6G solution, Avogadro constant and the area of R6G molecule covered, respectively. Therefore,
the EF of PMN-PT@GO(Ps−), Al2O3@GO and PMN-PT@GO (Ps+) can be obtained.
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Fig. S2 | The SERS spectra of R6G (10−5 M) collected from PMN-PT@GO(Ps−), Al2O3@GO and PMN-PT@GO (Ps+) as well as the Raman
spectra of R6G (10−2 M) collected from PMN-PT(Ps−), Al2O3 and PMN-PT(Ps+).
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  Section 3 The homogeneity of the SERS substrates

  Section 4: Calculation of Fermi level
VCPDUnder electrical contact, the contact potential difference ( ) between the Au tip and the sample is defined as:1

 

VCPD =
Φtip − Φsample

−e
, (S2)

e Φtip Φsample

Φ EVAC Ef

in which  is  electronic charge,  and  refer  to the work functions of  the Au tip and the sample,  respectively.
And the work function  equal to the vacuum level  minus the Fermi level 2.

  Section 5: Herzberg-Teller coupling term C[3]

The simplified expression representing the electronic transition from metal-phase substrate to molecule is: 

RIFK (ω) =
μKIμFKhIF < i |Qk| f >

((ε1 (ω) + 2ε0)2 + ε22)((ω2
FK − ω2) + γ2FK)((ω2

IK − ω2) + γ2IK)
, (S3)

ω ω = ωFK

ω = ωIK

where  is the frequency of the excited laser. The PICT resonance occurs at , and the molecular resonance oc-
curs at .
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Fig. S3 | The SERS spectra of R6G collected from five random points of PMN-PT@GO(Ps−), Al2O3@GO and PMN-PT@GO (Ps+), respect-
ively.
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Fig. S4 | Schematic diagram of PICT process from metal-phase substrate to molecule. |F> is Fermi state of metal, |I> and |K> represent
the ground state and the excited state of molecule, respectively, and hIF refers to the Herzberg-Teller coupling term.
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  Section 6: Supplementary SERS spectra of R6G under 785 nm excitation laser

  Section 7: Supplementary SERS spectra of R6G with different concentrations on PMN-PT@GO(Ps−)

  Section 8: Degradation experiments of substrate
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Fig. S5 | SERS performance of Al2O3@GO, PMN-PT@GO (Ps+)  and PMN-PT@GO(Ps−)  by employing R6G as the probe molecule under
excitation of 785 nm laser.
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(Ps−) at (a) 20 °C, (b) 0 °C.
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Fig. S7 | SERS spectra of R6G on PMN-PT@GO(Ps−) substrate after different number of cycles in the temperature range of 0 to 40 °C.
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  Section 9: SERS spectra of R6G on PMN-PT@GO(Ps−) with 532 or 633 nm laser

  Section 10: Supplementary SERS spectra of CV with different concentrations on PMN-PT@GO(Ps−)
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PT@GO(Ps−)/R6G and the electron transition process under 633 nm excitation laser.

 

600 800 1000 1200
Raman shift (cm−1)

1400

D G

1600 1800

In
te

ns
ity

 (a
.u

.)

600 800 1000 1200
Raman shift (cm−1)

1400 1600 1800

In
te

ns
ity

 (a
.u

.)

PMN-PT@GO (Ps
−)/CV PMN-PT@GO (Ps

−)/CV

10−5 M

10−6 M

10−7 M

10−8 M D G

10−5 M

10−6 M

10−7 M

10−8 M

10−9 M

20 °C 0 °Ca b

Fig. S9 | SERS spectra of CV with different concentrations on PMN-PT@GO(Ps−) at (a) 20 °C, (b) 0 °C under 633 nm excitation laser.
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  Section 11: Supplementary SERS spectra of MB

  Section 12: Selective enhancement of SERS spectra of mixed solutions
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Fig. S10 | SERS performance of PMN-PT@GO (Ps−) and PMN-PT@GO(Ps+) by employing MB as the probe molecule under excitation of
633 nm laser.
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  Section 13: SERS spectra of PNTP on different substrates
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Fig. S12 | (a, b) SERS performance of PMN-PT@GO (Ps−) and PMN-PT@GO(Ps+) by employing PNTP as the probe molecule under excitation

of  (a)  532  nm,  (b)  633  nm  laser.  (c)  Schematic  illustration  of  the  energy  band  structure  of  (i, iii)  PMN-PT@GO(Ps−)/PNTP,  (ii, iv)  PMN-

PT@GO(Ps+)/PNTP and corresponding the electron transition process under 532 or 633 nm excitation laser.
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  Section 14: Temperature-dependent SERS spectra of PNTP on PMN-PT@GO(Ps+)

  Section 15: Supplementary SERS spectra of PNTP with different concentrations on PMN-PT@GO(Ps+)

  Section 16: Experimental section
Synthesis  of  the  substrates. The  PMN-PT single  crystal  (<001>,  10×10×0.5  mm3)  was  grown by  modified  Bridgman
method. The Al2O3 crystal was purchased from Core Three Semiconductor Technology (Suzhou) Co. Graphene oxide
dispersion  was  purchased  from  Pioneer  Nano  Technology  (Jiangsu)  Co.  Graphene  oxide  dispersion  (500  μL)  was
dropped on the substrates and subsequently the graphene oxide nanosheets were immobilized on the substrates using
the spin coating method at 1500 rad/min (30 s) to prepare the Al2O3@GO, PMN-PT@GO (Ps+) and PMN-PT@GO(Ps−),
respectively.

Characterization. UV-Vis-NIR spectrophotometers was used to measure absorption spectra. Kelvin probe force mi-
croscopy (KPFM) was carried out on the SmartSPM system to measure the surface potential of the sample using a gold
probe as reference. A temperature control platform was employed to precisely control the temperature of the substrate
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by  connected  software.  SERS  measurements  were  performed  using  the  Raman  spectrometer  (Horiba  HR  Evolution)
with the 50× objective lens. 5 μL of the solution of the molecule to be measured was dropped onto the sample, dried and
used for spectral acquisition. The SERS spectra were obtained with 8 s acquisition time under 532 or 633 nm laser excit-
ation.

Density  functional  theory  calculations. The  first-principles  calculations  were  performed  within  the  frame  of  the
generalized gradient  approximation (GGA) proposed by Perdew, Burke,  and Ernzerhof (PBE) in the Vienna ab initio
simulation package (VASP). To get the accurate structure, we adopt DFT-D2 method to optimize molecular structures.
All atoms use the pseudopotentials recommended by VASP. The cut off energy was chosen to 550 eV. The convergence
criterion of energy in relaxation was set to be 10−5 eV. The Γ centered k-grids were adopted 6×4×1 for all slabs. For geo-
metry optimization, we fully relax the bulk systems until the Hellmann-Feynman forces were less than 0.05 eV/Å. After
the optimization of bulk systems, the <001> surface was cleaved, followed by the construction of more than 25 Å vacu-
um layer added to the unit cell of the layers to simulate periodic boundary conditions. Then, we constructed two mod-
els, one is the adsorption of Pb-O surface and graphene layer (2×5×1), and the other is the adsorption of B-O surface
and graphene layer.
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