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  Section 1: Principle of adjoint-based shape optimization
The adjoint optimization method is a kind of gradient descent algorithm based on adjoint field physics. In each optimiz-
ation process, the gradient information of the objective function in the whole parameter optimization space can be ob-
tained only by calculating the forward field and the adjoint field once.

ψ
ψ

Adjoint-based shape optimization is  to optimize the geometric dimensions of  binary patterns.  As shown in Fig. S2,
the initial  structure boundary is  a solid line,  and the updated boundary is  a dashed line.  For a given deformation, the
shadow area is  express. This figure can be regarded as a two-dimensional section of the deformation process of three-
dimensional graphics. To region , the integration needs to be carried out along the boundary of the initial pattern, and
the deformation of the pattern needs to be along the normal direction of the boundary.

The figure of merit (FOM) can be written as:
 

δFOM = 2Re
w
ψ
Pind(x′) · EA(x′)d3x′ , (S1)

Pind EA(x′) x′where  is the induced dipole and  is the adjoint electric field at the object location . According to the Fig. S2,
dA is the derivative along the surface, and dxn is the normal derivative, Eq. (S1) can be written as:
 

δFOM = 2Re
w
dA

w
dxn[Pind(x′) · Ea(x′)] , (S2)

when the deformation tends to zero:
  w

xn → δxn(x′) , (S3)

where denotes the shape variable of the normal direction of each point on the boundary.
So:

 

δFOM = 2Re
w
δxn(x′)Pind(x′) · Ea(x′)dS , (S4)

According  to  the  boundary  conditions  of  Maxwell's  equations,  the  tangential  direction  of E is  continuous  and  the
normal direction of D is continuous. Only in the continuous field, Eq. (S4) is meaningful. So the induced dipole can be
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Fig. S1 | Schematic diagram of adjoint optimization.
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Fig. S2 | Schematic diagram of adjoint-based shape optimization.
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written as: 

Pind(x′) = (ε2 − ε1)Enew(x′) , (S5)

Enew

Enew ∼= Eold

where  is the steady-state electric field of the deformed shape. Because even a small change in the boundary, the dis-
continuous component of E will change dramatically, so  is not true, so: 

Enew = Eold
|| + δE|| +

Dold
⊥ + δD⊥

ε2
∼= Eold

|| +
Dold

⊥

ε2
, (S6)

Similarly, the adjoint electric field can be written as follows: 

Ea = Ea
|| +

Da
⊥

ε1
, (S7)

So the change of FOM is written as: 

δFOM = 2Re
w
δxn(x′)[(ε2 − ε1)Ef||(x′) · Ea

||(x′) + (
1
ε1

− 1
ε2
)Df

⊥
(x′) · Da

⊥(x′)]dS , (S8)

From calculus: 

δFOM =
∑
i

∂FOM
∂xi

δxi , (S9)

For an optimization algorithm based on gradient: 

δxi =
∂FOM
∂xi

, (S10)

x′So, for all points  prime on the boundary, the deformation in the normal direction can be expressed as: 

δxn(x′) = 2Re
[
(ε2 − ε1)Ef||(x

′) · Ea
||(x′) +

(
1
ε1

− 1
ε2

)
Df

⊥
(x′) · Da

⊥(x′)
]
, (S11)

Ef|| Ea
||

Df
⊥ Da

⊥

 and  denote the tangential components of the electric field obtained in the forward and adjoint simulations, re-
spectively.  and  denote the normal components of the potential shift-vector in the forward and adjoint simula-
tions, respectively.
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  Section 2: Inverse design network structure distribution.

  Section 3: Training loss for smooth and rough regions.

  Section 4: Overview of the FCN network architecture and training procedure.
The fully connected neural (FCN) network is shown in Fig. S5(a), and one input data with a size of 5×5 is composed of
the width/length of a super meta-atoms, while the output data with a size of 1×2 is composed of the width and length of
the center meta-atom. As shown in Fig. S5(b), the network architectures of the FCN contain 5 layers, and the filter size
of each layer is shown in Fig. S5(b). Figure S5(c) depicts the simulated dependence of loss value on the iteration number,
and the loss eventually reaches the minimum (0.007) at the iteration of 5000.

 

A-network

input: Input input: [(None, 1,25,1)]
output: [(None, 1,25,1)]

dense 1: Dense input: [(None, 1,25,1)]
output: [(None, 25)]

dense 2: Dense input: [(None, 25)]
output: [(None, 32)]

dense 3: Dense input: [(None, 32)]
output: [(None, 64)]

dense 4: Dense input: [(None, 64)]
output: [(None, 128)]

dense 5: Dense input: [(None, 128)]
output: [(None, 50)]

dense 6: Dense input: [(None, 50)]
output: [(None, 25)]

I-network

input: Input input: [(None, 1,50,1)]
output: [(None, 1,50,1)]

dense 1: Dense input: [(None, 50)]
output: [(None, 128)]

dense 2: Dense input: [(None, 128)]
output: [(None, 256)]

dense 3: Dense input: [(None, 256)]
output: [(None, 512)]

dense 4: Dense input: [(None, 512)]
output: [(None, 256)]

dense 5: Dense input: [(None, 256)]
output: [(None, 128)]

dense 6: Dense input: [(None, 128)]
output: [(None, 64)]

dense 7: Dense input: [(None, 64)]
output: [(None, 32)]

dense 8: Dense input: [(None, 32)]
output: [(None, 16)]

dense 9: Dense input: [(None, 16)]
output: [(None, 8)]

dense 10: Dense input: [(None, 8)]
output: [(None, 2)]

Fig. S3 | Network architectures. (a) A-network. (b) I-network.
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Fig. S4 | (a) Loss of different iterations for smooth region. (b) Loss of different iterations for rough region.
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  Section 5: Simulated results of metalens with different diameters.
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Fig. S5 | Overview of the FCN network architecture and training procedure. (a) Schematic of the FCN network. (b) The network architectures of

the FCN. (c) The MAE loss for the smooth region.
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Fig. S6 | (a–c) Electric field distributions on xy and xz plane, and electric intensities of the focal spot for the metalens with the diameter of 60.5

μm; (d–f) Electric field distributions on xy and xz plane, and electric intensities of the focal spot for the metalens with the diameter of 100.5 μm.
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  Section 6: Simulated results of metalens with different NA.

  Section 7: The metalens fabrication process
The  schematic  of  the  metalens  fabrication  process  is  presented  in Fig. S8.  First,  a  500  μm-thick  Silicon  on  Sapphire
(SOS) substrate was cleaned by the piranha solution followed by ultrasonic cleaning under acetone and isopropanol re-
spectively.  Next,  a  100 nm-thick negative  electron resist  (ma-N2401,  Micro resist  technology)  was spin-coated on the
substrate and baked at 90 °C for 60 s. The electron beam patterning was performed by Elionix ELS-F125. The exposed
sample was developed at room temperature for 10 s (ma-D 525, Micro resist technology). Then the inductively coupled
plasma reactive ion etching (SENTECH SI 500) was employed to etch the silicon structures with SF6 and C4F8 mixture
and to remove the leaving electron resist.
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Fig. S7 | (a–c) Electric field distributions on xy plane for the metalens with the NA of 0.3, 0.35, and 0.4; (d–f) Normalized electric intensities of the

focal spot for the metalens with the NA of 0.3, 0.35, and 0.4.
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Fig. S8 | Schematic of the metalens fabrication process.
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  Section 8: Optical setup for metalens measurements

We have measured relative focusing efficiency of the three sizes of metalens with different exposure doses. The relative
focusing efficiency is defined as the ratio of the focusing power to the power of the focal plane, the focusing range is a
circular area centered on the peak intensity, with a radius of treble full-width-half-maximums (FWHMs).

 

5 μm 2 μm

1 μm2 μm

Fig. S9 | Scanning electron microscope image of the metalens with diameter of 1 mm.

 

Power meter Precision
pinhole

Metalens Lens Linear polarizer Fiber coupled
collimator

Fiber

Fig. S10 | Schematic of the optical setup used to measure the focusing efficiency of the metalens. The fiber laser output 1550 nm line po-

larization  beam is  collimated by  a  fiber  coupled  collimator  (Thorlabs,  PAF2-A7C),  liner  polarizer  is  used to  adjust  the  polarization  state  of  the

beam and adjust the laser intensity. A lens is used to adjust the size of laser beam. The adjusted laser beam with size same as the diameter of

metalens. A precision pinhole (Edmund, Unmounted) is placed at metalens’s focal length, the precision pinhole with 10 μm diameter to filter fo-

cus energy. A power meter is used to catch the energy incident on it.
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Fig. S11 | Measured focusing efficiency of three size metalens with different exposure doses.
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collimator

Fiber

Linear translation stage

CCD Tube lens Objective lens Metalens Linear polarizer

Fig. S12 | Schematic of the optical setup used to measure the focusing spot of the metalens. The fiber laser output 1550 nm line polariza-

tion beam is collimated by a fiber coupled collimator (Thorlabs, PAF2-A7C), liner polarizer is used to adjust the polarization state of the beam,

then incident on the metalens. The microscopic imaging system is composed of a objective lens (Mitutoyo, 100× magnification), a tube lens (Ed-

mund, MT-40) and a CCD camera (Allied Visio, G130), used to characterization the three-dimensional intensity distribution of the focal spot. The

microscopic imaging system is installed on a linear translation stage.
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Fig. S13 | Schematic of the optical setup used to characterize the imaging performance of the metalens. The fiber laser output 1550 nm

line polarization beam is collimated by a fiber coupled collimator (Thorlabs, PAF2-A7C), liner polarizer is used to adjust the polarization state of

the beam, then incident on an objective lens (Mitutoyo objective, 10× magnification). The laser is focused by the objective lens and illuminated

the United States Air Force resolution target (USAF resolution target).  The metalens is placed parallel  to the target, and the distance between

them is the focal length of the metalens. The magnification imaging system is composed of metalens, a tube lens (Edmund, MT-40), and a CCD

camera (Allied Visio, G032). The magnification imaging system is installed on a linear translation stage.
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