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 Section 1: Linearly-polarized light illumination

For a linearly polarized light excitation, the varying process (Movie SL3) of the y-component fields is that the four side
lobes first disappear, and then the main lobes begin to disappear as well. When t = 107 fs, the main lobes reappear in the
central region. With the change of time, both the main lobes and the side lobes gradually become bright, reaching the
brightest fields near t = 200 fs. After t = 250 fs, the darkening process is that the main lobes disappear initially accom-
panied with a clockwise rotation, and subsequently the side lobes gradually vanish. On the contrary, the bright process is
that the side lobes approximate to the positions of the main lobes and then replace the main lobes entirely. In a similar
fashion, the side lobes start to brighten with an ultrafast rotation during this time interval.  Finally,  the overall y-com-
ponent fields transfer to the initial state again around t = 400 fs. It should be emphasized that the ultrafast manipulation
of x-component and z-component fields has been elucidated in the main text.

As for the longitudinal field component of linearly polarized light illumination (see Fig. 2), we discover that the eye-
popping rotational phenomena appear, which evokes our extremely intense research interests in ultrafast optical tweez-
ers and spanners. In this respect, few researchers have revealed half-period rotated characteristics of time-assisted focal
light  fields  with different  polarization-vortex orders1,2.  Despite  such intriguing properties,  the  rotation of  light  field  is
based on the rotation of the incoming field rather than over ultrashort time, as reported in present manuscript. We no-
tice from Fig. S2(a) and S2(b) that when the time t < 0, the focal fields rotate anticlockwise while they turn into clock-
wise rotation if t > 0. That is, the sign of wave-front phase related to that of time is responsible for the resultant rotation
orientation  of  optical  fields3.  The  straight  rotation  process  of  the z component  field  (i.e.,  dynamic  processes  and  the
angle representations) is animatedly displayed in Movie SL4 and in Fig. S2. The rotation procedure is showcased as fol-
lows: t = 100 fs (see Fig. S2(b)), the optical field intensity exhibits a tiny value and the rotation angle equals to 15° relat-
ive to 0 fs; t =102 fs (see Fig. S2(c)), the principal lobe divides into half from the center and its intensity declines clearly.
Meanwhile, the field rotation proceeds to occur and its revolving angle is twice as large as Fig. S2(b); t =120 fs (see Fig.
S2(d)), the more side lobes appear in off-focus region and the main lobe holds lower intensity, as well as the focal optic-
al field rotated 90° exactly with respect to 0 fs; t = 200 fs (see Fig. S2(e)), the main lobe gradually brighten and simultan-
eously rotate a significant angle of 105°; t =300 fs (see Fig. S2(f)), two inner side lobes come together to form a new main
lobe. Moreover, the main lobe rotates an angle of 165° compared with the initial time. In fact, the total focal field pat-
tern is able to rebound to the original state (t = 0 fs) when the time increase to around 400 fs.
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Fig. S1 | A phase gallery of tightly focused linearly polarized light with first-order vortex at different temporal intervals. The phase distri-

butions of the transverse |Ex|2 (a1–a8), |Ey|2 (b1–b8) and longitudinal |Ez|2 (c1–c8) in the x−y plane with the time of t = 0 fs (a1–c1), 50 fs (a2–c2),

100 fs (a3–c3), 150 fs (a4–c4), 200 fs (a5–c5), 250 fs (a6–c6), 300 fs (a7–c7), and 350 fs (a8–c8), respectively. The sizes for all of the images

are 2λ×2λ. Parameters are the same as those in Fig. 2.
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Fig. S2 | Longitudinal field component of tightly focused vectorial vortex beams with rotational angle representation of linearly polar-
ized light in the x−y plane with (a) t = -100 fs, (b) t = 100 fs, (c) t = 102 fs, (d) t = 120 fs, (e) t = 200 fs, (f) t = 300 fs, respectively.
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Fig. S3 | Normalized Poynting vector fields and the energy flows (white arrows) along the propagating direction (the first row) and on
the focal plane (the second to last rows) of the tightly focused linearly polarized beams when t = 0 fs, 100 fs, 200 fs, 300 fs, 400 fs. The

total Poynting vector fields and the energy flows (the first row and the second row); radial Poynting vector fields Sr (the third row) and azimuthal

Poynting vector fields Sφ (the fourth row) as well as longitudinal Poynting vector fields Sz (the last row).
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 Section 2: Comparing linearly and radially polarized illumination
 

 Section 3: Azimuthally-polarized light illumination
According to the Richards-Wolf vectorial diffraction theory4−6, the electric field distribution in the focal region of an azi-
muthally polarized vortex-dressed Laguerre–Gaussian femtosecond pulse light focused by a high NA objective lens can
be expressed as, 

E (r,φ, z,ω) = −ikf
2π

w α

0

w 2π

0
S (θ,ω) exp (imϕ) sinθ

√
cosθexp [ikrsinθcos (ϕ− φ) + ikzcosθ]P3 (θ,ϕ) dϕdθ , (S1)

where the unit polarized matrix7,8, 
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spectively.
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P (θ,ϕ) = −sinϕi+ cosϕj+ 0k . (S2)

The local field in the time domain E(r, φ, z, t) can be described by separately Fourier transforming each vector com-
ponent of E(r, φ, z, ω). Equation (S1) can be rewritten as: 

Ex (r,φ, z, t) =
f
2c

w ∞

0

w α

0
ωS (θ,ω) sinθ

√
cosθexp

[
ω
(z
c
cosθ− t

)]
(Im+1 − Im−1) dθdω ,

 

Ey (r,φ, z, t) = − if
2c

w ∞

0

w α

0
ωS (θ,ω) sinθ

√
cosθexp

[
iω

(z
c
cosθ− t

)]
(Im+1 + Im−1) dθdω ,

 

Ez (r,φ, z, t) = 0. (S3)

From the Maxwell's equations, the relationship between the electric field and magnetic field is determined by: 

H = − i
k
rotE, (S4)

where 

rotE = (∂yEz − ∂zEy) i− (∂xEz − ∂zEx) j+ (∂xEy − ∂yEx) k. (S5)

Hence, three-independent magnetic field components in the focal plane can be derived in the following form: 

[Hx,Hy,Hz] = − i
k
[∂yEz − ∂zEy, ∂zEx − ∂xEz, ∂xEy − ∂yEx] . (S6)

Jm′ (x) = Jm−1 (x)−
m
x
Jm (x)

The  partial  differential  in Eq.  (11) can  be  resolved  by  considering  the  recursive  relation  of  the  Bessel  function:

.
For azimuthally polarized light illumination (see Fig. S6), it is clearly seen that the total focal field (see Fig. 3(a1)–(a8))

and its two transverse field components (see Fig. 3(b1)–(b8) and Fig. 3(c1)–(c8)) implement rich distributions while the
longitudinal field component (see Fig. 3(d1)) equal to zero with the passage of time. As for the total fields firstly, the ini-
tial central bright spot with single ring begins to shift into multi-ring structures and then go back to the state of t = 0 fs.
Secondly, the iso-intensity transverse field components show the rotational distributions which possess the same vari-
ation of radially polarized light illumination as time elapsed.  It  is  noticed that for the azimuthally polarized light illu-
mination there is only the rotational feature in the focal plane but no the light-dark alternation and transverse/longitud-
inal polarization conversion owing to the lacked z-component field. 
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Fig. S6 | The focal light field distributions of azimuthally polarized light illumination with first-order vortex at different temporal inter-
vals. The total intensity distributions |Et|2 (a1–a8) as well as the transverse |Ex|2 (b1–b8), |Ey|2 (c1–c8) and the longitudinal |Ez|2 = 0 (d1) field dis-

tributions in the x−y plane when t = 0 fs (a1–d1), 50 fs (a2–c2), 100 fs (a3–c3), 150 fs (a4–c4), 200 fs (a5–c5), 250 fs (a6–c6), 300 fs (a7–c7),

and 350 fs (a8–c8), respectively. The phase distributions inset in the corresponding light field distributions in Figs. (b1)–(b8) and (c1)–(c8). Para-

meters are the same as those in Fig. 2.
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 Section 4: Conceptually experimental paradigm

We now have  successfully  generated  various  cylindrical  (radially  and  azimuthally  polarized)  vector  beams  and  detect
their tightly focused light fields. For example, we have experimentally synthesized high-quality radially and azimuthally
polarized beams utilizing the femtosecond laser pulse, as shown in Fig. S8. Also, the tightly focused (NA=0.9) light fields
of  these  ultrafast  radially  and  azimuthally  polarized  (vortex)  beams  were  visualized  in Fig. S9. These  preliminary  ad-
vances are observed at a static time (t = 0 fs). 
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Fig. S7 | Schematic of the optical setup for synthesizing the controllable ultrafast multi-target light fields using three detachable sys-
tems. Bottom inset: Definitions of the symbols used to identify the optical components in the setup.
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Fig. S8 | Experimentally  synthetic  radially  and  azimuthally  polarized  beams. (a1) –(a5)  the  radially  polarized  beams;  (b1) –(b5) the  azi-

muthally polarized beams. The green arrows denote distinct transmitted directions of the polarization analyzer.
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Fig. S9 | The tightly focused light fields at 0 fs of (a) radially polarized beam; (b) azimuthally polarized beams; (c) radially polarized beam with 1-

order vortex phase; (d) azimuthally polarized beams with 1-order vortex phase.
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 Section 5: Statements of the direction of Poynting vector

ψ = tan−1(
√
S2r + S2ϕ/S2z)

As shown in Fig. S10(a) and 10(b),  the horizontal  and vertical  arrows denote pure transverse and longitudinal  energy
flux, respectively.  In Fig. S10(c),  we defined a tilt  angle ψ to quantize the proportion amount between two orthogonal

energy  fluxes  according  to .  That  is,  the  transverse  energy  flow  is  prevailing  when ψ <  45°;
hence the corresponding longitudinal electric field plays a major role, and vice versa. Therefore, it is convenient to judge
the conversion of polarized component fields through the redistributed energy flux. 

 Section 6: The case if the objective lens has aberration
As a matter of fact, we implement the control of ultrafast multi-target light fields via an aplanatic high numerical aper-
ture  objective  lens.  According  to  previous  researches,  for  an  ideal  imaging  system  the  remaining  parts  of  aberration,
such  as  coma,  distortion,  astigmatism  etc.,  almost  have  no  influence  on  the  outcomes  and  thus  they  can  be  ignored.
However, it is impossible to eliminate aberration of objective lens for the practical scenarios. In order to illustrate this
statement, we present the optical field distributions under distinct aberration following refs. 9 and 10, 

E (r,φ, z,ω) = − ikf
2π

x
S (θ,ω) exp (imϕ) sinθA(θ,ϕ)P (θ,ϕ) exp[ikrsinθcos(ϕ− φ) + ikzcosθ]dθdϕ , (S7)

here, E(r, φ, z, ω) is the electric field vector at the point of (r, φ, z) expressed in a cylindrical coordinate whose origin loc-
ates  at  the  ideal  focal  point  of  the  objective  lens, P(θ, ϕ)  is  matrix  unit  vector  about  the  polarization  of  the  incident
beam, A(θ, ϕ) denotes the wavefront aberration function of the objective lens and usually three primary aberrations in
the beam can be expressed as:

A(θ,ϕ) = exp
[
ikAs

(
sinθ
sinα

)4]
Spherical aberration:  ,

A(θ,ϕ) = exp

[
ikAc

(
sinθ
sinα

)3

cosϕ

]
coma:  ,

A(θ,ϕ) = exp

[
ikAa

(
sinθ
sinα

)2

cos2ϕ

]
astigmatism:  ,

where As, Ac, Aa denote aberration coefficients. For an ideal imaging system, we can assume that As, Ac, Aa are all equal
to zero. By a Fourier-transformation, the electric fields of the femtosecond pulse in the vicinity of the focal spot can be
calculated by the superposition of each spectral component as, 

Ei (r,φ, z, t) =
w
Ei (r,φ, z,ω)exp (−iωt) dω, i = x, y, z. (S8)

 

 Section 7: The pulse-width-dependent ultrafast multi-target light fields
To further clarify the dependence of ultrafast multi-target light fields on the pulse width, we have performed the tightly
focused light field distributions of radially polarized beam with distinct pulse width of 8 fs and 10 fs at different time in-
tervals, respectively, as shown in Figs. S11 and S12. It is found from Figs. S11 and S12 that the spatial rotation and polar-
ization conversion between two orthogonal field components still exist, while the bright-dark alternative feature in the
total fields is not so obvious. Therefore, we suspect that the multi-target fields might be sensitive to shorter laser pulse. 
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Fig. S10 | The direction of Poynting vector for interpreting the polarization conversion between two orthogonal component fields.
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 Section 8: The tightly focused light fields in between 400fs – 1 ps
It can be observed from Fig. S13 that the overall field and its three field components at 400 fs possess consistent distri-
butions of that at 0 fs [see Fig. S13(a1)–(d1)]. As time elapses from 400 fs to 1 ps, we find from Fig. S13(a1)–(a8) that the
total fields display obvious extensions at the time of odd multiples of 100 fs (i.e., 500 fs, 700 fs and 900 fs), while basic-
ally maintain invariability at the time of even times of 100 fs (i.e., 400 fs, 600 fs, 800 fs and 1000 fs). Furthermore, the x-
field  components  show  the  similar  patterns  with  the  total  fields  due  to  the  dominant  roles  in  total  fields  [see Fig.
S13(b1)–(b8)]. The difference between them is that the spatial rotations exist in x- components, whereas there is no such
feature in overall fields. Analogous to that from 0 fs to 400 fs, we don’t consider the y- components because of the tiny
magnitudes, which is order of magnitude smaller [see Fig. S13(c1)–(c8)]. It is shown from Fig. S13(d1)–(d8) that with
time variation, there remains the polarization conversions between x- and z- components.

Unlike that from 0 fs to 400 fs for radially polarized light illumination, the bright-dark alternation in the total fields as
time elapses from 400 fs to 1 ps vanishes as shown in Fig S14(a1)–(a8). Interestingly, the spatial rotation features are still
retaining as time goes [see Fig. S14(b1)–(b8) and Fig. S14(c1)–(c8)]. Moreover, the reciprocal conversions between two
orthogonal polarized field components also unfold in Fig. S14(d1)–(d8).
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Fig. S11 | The tightly focused field distributions of radially polarized light with the 1-order vortex phase at different temporal intervals
and with pulse width of 8 fs.
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Fig. S12 | The tightly focused field distributions of radially polarized light with the 1-order vortex phase at different temporal intervals
and with pulse width of 10 fs.
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Fig. S13 | The tightly focused field distributions of linearly polarized light with the first-order vortex phase at different temporal delays
in between 400 fs – 1 ps.
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Fig. S14 | The  focused  field  distributions  of  radially  polarized  light  with  the  first-order  vortex  phase  at  different  temporal  delays  in
between 400 fs – 1 ps.
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 Section 9: The tightly focused radially polarized light fields with m = 2, 3
 

 Supplemental movies
The vividly detailed visual representations of linearly polarized, radially polarized, azimuthally polarized (longitudinal
field components equal to zero) total field, x field component, y field component and z field component are exhibited
from Movie SL1 to SA3, respectively.

Movie SL1. The total field intensity distribution focusing of linearly polarized light with first-order vortex at different
times.

Movie SL2. The x-component field intensity distribution focusing of linearly polarized light with first-order vortex at
different times.

Movie SL3. The y-component field intensity distribution focusing of linearly polarized light with first-order vortex at
different times.

Movie SL4. The z-component field intensity distribution focusing of linearly polarized light with first-order vortex at
different times.

Movie SR1. The total field distributions focusing of radially polarized light with first-order vortex at different times.
Movie SR2. The x-component field distributions focusing of radially polarized light with first-order vortex at differ-
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Fig. S15 | The tightly focused field distributions of radially polarized light with the 2-order vortex phase at different temporal intervals
from 0 fs – 350 fs.
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Fig. S16 | The tightly focused field distributions of radially polarized light with the 3-order vortex phase at different temporal intervals
from 0 fs – 350 fs.
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ent times.
Movie SR3. The y-component field distributions focusing of radially polarized light with first-order vortex at differ-

ent times.
Movie SR4. The z-component field distributions focusing of radially polarized light with first-order vortex at differ-

ent times.
Movie  SA1. The  total  field  distributions  focusing  of azimuthally  polarized  light with  first-order  vortex  at  different

times.
Movie SA2. The x-component field distributions focusing of azimuthally polarized light with first-order vortex at dif-

ferent times.
Movie SA3. The y-component field distributions focusing of azimuthally polarized light with first-order vortex at dif-

ferent times.
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