DOI: 10.29026/oea.2022.200046

All optical logic devices based on black arsenic-phosphorus with strong nonlinear optical response and high stability

Leiming Wu^{1,2†}, Taojian Fan^{1†}, Songrui Wei^{1†}, Yijun Xu¹, Ye Zhang¹, Dingtao Ma^{1,2}, Yiqing Shu², Yuanjiang Xiang¹, Jun Liu¹, Jianqing Li², Krassimir Panajotov³ and Han Zhang^{1*}

¹Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China; ²Faculty of Information Technology, Macau University of Science and Technology, Macao 519020, China; ³Department of Applied Physics and Photonics (IR-TONA), Vrije Universitei Brussels, Pleinlaan 2, B-1050 Brussels, Belgium.

[†]These authors contributed equally to this work.

*Correspondence: H Zhang, E-mail: hzhang@szu.edu.cn

This file includes:

Section 1: The nonlinear optical response of B-AsP at different concentrations Section 2: Nonlinear optical response of BP and B-As_{0.4}P_{0.6} Section 3: Unidirectional nonlinear excitation at $\lambda = 532$ nm

Supplementary information for this paper is available at https://doi.org/10.29026/oea.2022.200046

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022. Published by Institute of Optics and Electronics, Chinese Academy of Sciences.

Wu LM et al. Opto-Electron Adv 5, 200046 (2022)

Section 1: The nonlinear optical response of B-AsP at different concentrations

Figure S1 shows the nonlinear optical response of B-AsP at different concentrations, which demonstrates that after the concentration of the B-AsP material is doubled, the corresponding nonlinear response is also nearly doubled accordingly.

Fig. S1 | The nonlinear optical response of B-AsP when the concentrations are C_1 = 0.0025 mg/mL and C_2 = 0.0050 mg/mL at λ = 532 nm.

Section 2: Nonlinear optical response of BP and B-As_{0.4}P_{0.6}

The nonlinear optical response of BP and B-As_{0.4}P_{0.6} are shown in Fig. S1. For a comparison, the B-As_{0.4}P_{0.6} is measured to have a stronger nonlinear optical response than BP under $\lambda = 532$ nm and 671 nm, indicating that the B-As_{0.4}P_{0.6} is more suitable for the design of nonlinear photonic devices.

Fig. S2 | The nonlinear optical response of BP and B-As $_{0.4}P_{0.6}$ under λ = 532 nm and 671 nm.

Section 3: Unidirectional nonlinear excitation at λ = 532 nm

The phenomenon of unidirectional nonlinear excitation can be achieved not only at $\lambda = 671$ nm, but also at $\lambda = 532$ nm (Fig. S2), indicating that the hybrid structure has a broadband optical response to realize the spatial asymmetric light propagation.

Fig. S3 | The unidirectional nonlinear excitation in 2D B-AsP/ SnS₂ hybrid structure at λ = 532 nm.