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Section 1: Thermal dynamics model  
In micro-ring resonators (MRRs), the dependency of the N-th resonance wavelength λr on the chip temperature T 
obeysS1  

 1 δ δ 	,       (S1.1) 

where, δT = T – T0 is the difference between T and the “cold-cavity” chip temperature T0 which gives rise the waveguide 
refractive index n0. Here, ε is the expansion coefficient and R is the radius of the MRR. The resonance wavelength λr thus 
becomes a function of δT  

δ ≅ 1 δ ≡ 1 	,							 p, t      (S1.2) 

where, λi0 and ξi, i = p, t, are the cold-cavity resonance wavelengths and the corresponding linear thermo-optics (TO) 
coefficients of the pump and the TH modes.  

In silicon-rich complementary metal-oxide-semiconductor (CMOS) compatible platforms, the nonlinear TO behavior 
invoked by the intra-cavity optical power depends on the temperature difference ΔT between the mode volume (local 
heat) and the chip (at T) S1. The rate equation of the absorbed heat qgen is proportional to the intra-cavity pump power Pp 
which gives  

		,          (S1.3) 

where, Qp and Qpa are the loaded Q of pump and Q-factor relating to the pump absorption, respectively. For the corre-
sponding net heat diffusion is taken as 

∆  ,         (S1.4) 

where, U = KLeff/Seff is the effective thermal conductivity between the cavity mode volume and the chip, in J/(s∙°C). Here, 
K is material thermal conductivity in W/(m∙K) and Seff is the area of effective surface of the intra-cavity pump mode and 
Leff is the effective length from the cavity mode volume to the chip. The rate equation of the accumulated net heat ΔT in 
the cavity mode volume thus becomes 

∆
∆  ,      (S1.5) 

where, Cp is the heat capacity in J/°C. 
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Section 2: Thermal dynamics THG model with nonlinear TO and Kerr effects     
For the pump and third harmonics (TH) emission, if we assume they have nearly the same group velocities by neglecting 
their counter propagation modes then the spatiotemporal slowly varying envelope of their optical fields will be consistent 
with the choice of the moving reference frame. We can further neglect the high-order dispersion terms if the discussion 
is only restricted to those that are nearly phase matched and have narrow linewidths. According to the thermal dynamics 
model described in Section 1, we can write a set of time-domain rate equations describing the dynamics of third har-
monics generation (THG) in MRRs asS2-S5,  

| | 3 ∗ ∗ 	,     (S2.1) 

| | 	,                    (S2.2) 

∆
∆ 	.	                                              (S2.3) 

where, /  and | | /3  are the photon numbers of intra-cavity pump and TH emission. Here, ωp 

is angular frequency of extremal pump laser and Ip and It are the intra-cavity energy of the pump and TH emission. 
Ωt'(δT) = 3ωp – ωtr(δT) and Ωp'(δT) = ωp – ωpr(δT) are the frequency detuning from the resonance peak of the TH emis-
sion and corresponding pump wavelength. ωi0 and ωir, i = p, t, are the cold-cavity resonance frequencies and resonance 
frequencies at δT of the pump and TH emission, respectively. κp, κt, and κpe are the overall loss of the pump, the overall 
loss of TH wave and the externally coupling rate of pump. On the right-hand side of Eqs. (S2.1) and (S2.2), the third term 
is the self-phase modulation (SPM), the fourth term is the cross-phase modulation (XPM), and the fifth term is TH cou-
pling effects. Here, gpp and gtt are the nonlinear parameters, and gpt and gtp are the XPM coefficients of the pump and TH 
emission, while gTH is the growth rate of the THG. In Eq. (S2.1), the last term refers to coupled input pump power. If we 
define | | / , x = in, through, drop, are the amplitudes of the input pump, the through port pump, and the 
drop port pump, the dependences of pthrough and pdrop to ap can be written as 

	,         (S2.4) 
	.          (S2.5) 

If we consider the intra-cavity pump power induced ΔT, we can rewrite Eqs. (S1.2) as 
δ , ∆ ≡ 2π / ≅ 1 δ ∆ 	,						 ,     (S2.6) 

where, ξp' and ξt' are the nonlinear TO factors of the pump and TH modes. At δT = 0, the cold cavity detunings become 
Ωp = Ωp'(0) = ωp – ωp0 and Ωt = Ωt'(0) = 3ωp – ωt0. For silicon rich CMOS compatible waveguides, since δ ∆ ≪
1, Eq. (S2.6) yields 

′ δ ′∆

δ ′∆
≅ δ ′∆ 	.							 ,     (S2.7) 

For typical THG in MRRs, since the intra-cavity power of the pump is much larger than that of the TH wave, we can ne-
glect all of the SPM terms, XPM term and pump depletion induced by TH wave. By replacing Ωp' and Ωt' using Eqs. 
(S2.7), we can rewrite Eqs. (S2.1)-(S2.2) in the nondepletion form of 

δ ∆  ,         (S2.8) 

δ ∆  .        (S2.9) 
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Section 3: Thermal self-stability of THG in microcavities 
In Section 2, Eqs. (S2.8)-(S2.9) describe the dynamics of the pump and the TH emission on a reference frame moving at 
the group velocity vgp

S6. Even using continuous-wave (CW) external pump, steady nonuniform intra-cavity energy dis-
tribution still exists, such as Turing rolls or solitonS7. However, the intra-cavity energy induced mode volume heat does 
not follow this moving frame. Thus, for pump and TH wave, the phase of intra-cavity spatiotemporal pulse is affected by 
both intraframe Kerr effect and the out-of-frame averaged thermal effects.  

In this work, our discussion requires steady and uniform intra-cavity power distribution for both pump and TH waves. 
In this case, both optical power and net mode volume heat are evenly distributed on the ring cavity, in which thermal 
effects with Kerr effect are aligned regardless the reference frame. This uniform intra-cavity power distribution can be 
experimentally achieved by choosing resonance modes with large normal dispersion. If we input a CW external pump to 
these modes and sweep the pump wavelength at a low speed, a thermally self-stabilized system will be built up to main-
tain the equilibrium between the intra-cavity power induced absorbed-heat and the dissipated-heat, which can be appre-
ciated by calculating ∂ΔT/∂t = 0, finding the steady-state solution of Eq. (S2.3), 

  ∆ 	.          (S3.1) 

By using the same steady-state assumption and substituting Eq. (S3.1) in Eq. (S2.8), we have 

δ 0	,     (S3.2) 

where, we define  as the thermal nonlinear coefficient of the pump in rad/J. From Eq. (S3.2), the de-

pendence of pump cold resonance detuning Ωp to the chip temperature and the intra-cavity pump energy of the MRR 
can be written asS8   

δ 		.       (S3.3) 

Note that in Eq. (S3.3), Θp >> gpp in highly doped silica glass and the SPM terms can be neglected.  
Figure S1(a) plots Ωp as a function of Ip at different T using Eq. (S3.3). The parameters used for plotting are shown in 

Table S1. As shown in Fig. S1(a), when up sweeping the wavelength of CW input pump at a fixed power, the intra-cavity 
pump energy increases due to the reduction of effective pump detuning Ωp' which heats up the pump mode volume of 
MRR and leads to redshift of the resonance frequency of the pump mode. Once the sweep speed of the pump wavelength 
is slow enough so that the cavity can be thermally self-stabilized, it produces a triangular shape response over a board 
spectrum rangeS2-S3. Figure S1(a) shows that Eq. (S3.3) can well describe the chip temperature change δT induced pump 
resonance drifting.  

For TH wave, by using the same steady-state assumption and substituting Eq. (S3.2) in Eq. (S2.9), we have 

Ω δ 	,      (S3.4) 

where, Θt = ξt'ωt0/τp is the nonlinear TO coefficient of the TH emission. In Eq. (S3.4), the term of ΩNL = (Θt + gtp)Ip is the 
overall nonlinear phase mismatch in THG. From Eq. (S3.4), we can analytically express the dependence of TH power as 

Ω
	.        (S3.5) 

In Eq. (S3.5), we notice that THG energy is not only determined by the product of gTH and Ip, it also depends on the 
loss of the TH mode κt, as well as the linear and nonlinear TO phase mismatch. In Eq. (S3.5), the term of ξtωt0δT corre-
sponds to chip temperature δT induced linear TO phase mismatch and the terms of ΘtIp and gtpIp denote nonlinear TO 
effect and Kerr effect induced phase mismatch, respectively, both of which are proportional to Ip.  
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Fig. S1 | Prediction of generating TH modes with configurable TDWS when with different thermal mismatch ∆τ. (a) pump resonance shift 

plotting as a function of intra-cavity pump energy Ip by using Eq. (S3.2) when T = 20°C (blue lines), 25°C (light blue lines), 30°C (light green lines), 

and 35°C (orange lines). (b – d) used the same line styles for different T as in (a). The cold cavity pump resonance linewidth at T0 = 40°C is also 

shown in gray dashed line. Corresponding spectra of TH resonance plotting as a function of Ωp when ∆τ > 0 (b), ∆τ ≈0 (c), ∆τ < 0 (d), under different 

T using Eq. (S3.5). In (b – d), the parameters are the same expects for Θt = 7 ×108 rad/pJ in (b) for Θt = 4 ×108 rad/pJ in (c), and for Θt = 108 rad/pJ 

in (d). In (b – d), the cold cavity TH resonance neglecting the overall nonlinear phase mismatch ΩNL is also shown in gray dashed line by assuming 

Ip = 15 pJ. 

 
Table S1 | List of parameters used in Fig. S1. 

Parameter Description Value Units 

T0 The cold cavity chip temperature 40 °C 

λp0 The pump resonance wavelength at T0 1550 nm 

ξp The linear TO coefficient of the pump mode 10−6 1/°C 

ξt The linear TO coefficient of the TH mode 4×10−7 1/°C 

Θp The nonlinear TO redshift rate of the pump mode 109 rad/pJ 

κpe The externally coupling rate of the pump mode 2×108 s−2 

Pi The input pump power 0.1 W 

gTH The growth rate of THG 106 pJ−2 

Qp Q-factor of the pump mode 5×105  

QTH Q-factor of the TH mode 3×105  

 
It is plotted in Figs. S1(b)–S1(d) the corresponding spectra of TH resonance as a function of Ωp using Eq. (S3.5). The 

triangular pump response as shown in Fig. S1(a) tilts the shape of TH resonance response. In this case, the overall non-
linear phase mismatch redshifts the resonance of TH mode and broadens the linewidth of TH resonance (Δωt’ > Δωt). 
Once thermal matched, i.e. Δτ ≈ 0, chip temperature independent THG can be achieved as shown in Fig. 1(c), which is 
known as athermal modes. When the thermal mismatch Δτ > 0, since the linear TO phase mismatch over-compensates 
the nonlinear TO phase mismatch, the resonance of TH mode blueshifts when δT decreases as shown in Fig. S1(b). Fig. 
S1(d) shows the case of under linear TO compensation when Δτ < 0 in which the resonance of TH mode redshifts when 
δT decreases.  

The results of Figs. S1(b)–S1(d) indicate that Eq. (S3.5) can well describe the dependence of TH resonance on δT. 
With this model we are able to predict the visible THG pumped with the telecom wavelengths with positive, negative or 
even zero temperature dependent wavelength shift (TDWS).  
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Section 4: Linear and nonlinear TO phase mismatches in THG  
From the model of Eq. (S3.4), we can determine the overall THG phase mismatch, which consists of the thermal phase 
mismatch and Kerr nonlinear mismatch ΩKNL, by using Eq. (S2.7). The propagation constants of the pump and TH waves 
can thus be written as 

δ , ∆ , ⋯,      (S4.1) 

δ , ∆ , ⋯,       (S4.2) 

where, n0i and ngi, i = p, t, are the effective refractive indices and group indices of the pump and TH waves, respectively. 
Here, c is the speed of light in vacuum and β2,ir, i = p, t, are the group velocity dispersion (GVD) parameter at the reso-
nances of the pump and TH waves, respectivelyS9. From Eq. (S4.1) and Eq. (S4.2), we get the expression of ΔβT 

∆ δ , ∆ 3
Δ Δ Ω Ω

, 3 , 	,    (S4.3) 

where, Δn = n0p − n0t and Δ . Here Δn is negligible when compared with the difference 

of their group velocities Δng. By ignoring the effects of group velocity dispersion and higher order dispersion terms in 
CW cases, the overall THG phase mismatch can be given by   

∆ 	 ∆ ∆ ∆
Δ

δ ∆  

Δ Ω δ Θ g 	,        (S4.4) 

where, ΩTL = ξtωt0δT is linear TO phase mismatch determined by the chip temperature δT and ΩTNL = ΘtIp is the nonline-
ar TO phase mismatch caused by the intra-cavity pump energy Ip. The overall nonlinear phase mismatch becomes ΩNL = 
ΩTNL + ΩKNL = (Θt + gtp) Ip.  
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Section 5: Deterministic generation of athermal modes via THG  
From Eq. (S4.4), when Δβtotal ≈ 0, we have 

δ g 	.       (S5.1) 
The existence of athermal modes can be appreciated by calculating ∂Ωt/∂T from Eq. (S5.1), and setting it to zero, we have 

δ δ δ 	.       (S5.2) 

Since δT = T − T0, the cold cavity temperature T0 was determined by Ip (δT) = 0 when δT = 0. 
By bringing Eq. (S5.2) into Eq. (S3.2), we yield 

δ δ 0	,   (S5.3) 

where, τp ≈ ξpωp0/Θp is the compensation rate for the pump modes. If we define , Δ δ Δ , 

and Θ Δ , as the normalized pump detuning, the normalized intra-cavity pump power, and the normalized 

intra-cavity pump power, respectively. Eq. (S5.3) can be written in the normalized form of 
1 	.         (S5.4) 

As discussed in ref.S7, the athermal mode exists when | | √3, which gives the critical values of normalized in-
tra-cavity pump energy and input pump as 

∓
		,          (S5.5) 

∓
1 	.       (S5.6) 

From Eq. (S5.5), only when α is slightly larger than √3, the temperature range of the athermal mode can be maxim-
ized which looks like 

 |δ δ | √ 3 3 Δ 	.      (S5.7)  

Moreover, from the condition F2 > ρ we can further characterize the temperature range of the athermal mode, which 
gives  

|δ | |δ |	,       (S5.8) 

which indicates in the specific pump mode of MRR, the upper limit of δT is determined by the input pump power.  
From Eq. (S5.4), when F2 > ρ, we have  

1	.         (S5.9) 

Note that, since ρ has to be larger than zero, the smaller root of α cannot lead to an athermal mode. Therefore, Eq. 
(S5.9) gives the frequency detuning of the athermal pump mode as 

Δ |δ |
|δ |

	.      (S5.10) 

The form of Eq. (S5.10) is similar to that of Eq. (S3.3). Both Eq. (S5.7) and Eq. (S5.10) indicate that Δτ with a slightly 
larger than zero value can provide a proper linear compensation rate to nonlinear TO phase mismatch across tens of de-
gree temperature range for athermal operation. 
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Section 6: Determination of linear and nonlinear TO coefficients ratios τp  
Figure S2(a) shows the measured cold-cavity resonance wavelengths of TE pump (blue squares) and TM pump (red cir-
cles) modes on corresponding chip temperature T in the C- and L-bands. With the core and claddings of the waveguide 
having different thermal coefficients, the TDWS of the pump modes are not identical and the resulting shift rate depends 
on the mode confinement of the specific modes. The measured linear TO coefficient ξp and the corresponding TDWS dp 
= ξpλp are shown in Table S2. It shows that, ξp of the TM mode increases and ξp of TE mode slightly reduces across the C- 
and L-bands. The measured TDWS is around 20 pm/°C for both the polarization modes, which is similar to the pub-
lished values of ~21.1 pm/°C in SiN MRRsS10 and 16 pm/°C in AlN/Si3N4 MRRsS11 but much lower than in silicon 
waveguidesS12. Figure S2b shows the transmission spectra at the drop port for the TE and TM modes when swept with a 
CW pump laser. The triangular response shapes are due to the intra-cavity power induced nonlinear TO resonance 
redshiftS10, S13–S14, which can effectively enhance the TH measurement window to 0.8 nm in highly doped silica glass 
MRRs, as shown in Fig. S2(b). 

Moreover, it is important to note that the intra-cavity pump power can be determined directly from the detected 
drop power. Using the drop responses in Fig. S2b at the same input CW pump power, we calculated the nonlinear TO 
redshift rate Θp as shown in Table S2. For both TM and TE modes, Θp decreases when the resonance wavelength increas-
es which is consistent with the results in ref.S8. We also noticed that the Θp of TE modes is larger than that of TM modes. 
Table S2 also shows the calculated τp. For TM modes, τp is doubled from C-band to L-band. Meanwhile, τp of TE modes 
are nearly the same in the bandwidth. Note that, Θp is two order of magnitudes larger than the Kerr nonlinear factor gpp = 
7.16×106

 pJ−1 which corresponds to the measured Kerr nonlinear coefficient of the pump wave γpp = 0.310 W−1∙m−1 @ 
1550 nm. It shows that for highly doped silica glass MRRs, the nonlinear TO effect is much stronger than the Kerr effect. 
For comparison, the ratio of Θp/gpp is around 10 in silicon nitride waveguideS15. Therefore, it is reasonable to neglect Kerr 
nonlinearity induced phase mismatch in this work.  

 

 
Fig. S2 | Determine the linear and nonlinear TO coefficients of the pump and TH modes. (a) Measured cold-cavity resonance locations vs 

chip temperature T. (b) Measured drop response of MRR (R-3). (c) TDWS rates comparison of three types of TH modes corresponding to Fig. 3(a). 

Since the TDWS rates have slightly difference in different temperature ranges, the TDWS rates are compared within 47°C ~ 55°C (upper) and 31°C 

~ 45°C (lower). 

 
Table S2 | The corresponding parameters of Fig. S2(a). 

No. Pump type λp0 (nm) @Pd = 1 mW dp (pm/°C) ξp (1/°C) Θp (rad/pJ) τp (pJ/°C) κ1 
1 TE 1547.62@48 °C 24.90 1.61×10−5 1.87×109@48 °C 6.57 0.0691 
2 TM 1548.29@48 °C 20.01 1.29×10−5 1.68×109@48 °C 5.86 0.0610 
3 TM 1581.15@46 °C 24.01 1.52×10−5 0.94×109@46 °C 12.03 0.0670 
4 TE 1582.06@46 °C 23.00 1.45×10−5 1.41×109@48 °C 7.70 0.0775 
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