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Section 1: Chemical ordering/disordering in substitutional alloys
In a system close enough to its equilibrium, the general equation for relaxation of the order parameter 7(r, t) varying in
space (r) and time (t) reads"*”
on(r,t)  I' §F
o 2Br)

where f=kgT, kg is the Boltzmann constant, T is temperature in the system, /”is the characteristic frequency of the relax-

(S1)

ation process, and OF/o7(r) is the functional derivative of the free energy of the system.
For a substitutional alloy, equation (S1) can be rewritten in a discrete approximation for chemical ordering via atomic

diffusion through vacancies in the atomic lattice,

oA(rt) 1 - SAF
or 2/3;F(r r)xcv(t)aA(r') ’

which is similar to that introduced previously, for instance, in ref.’. The notations in equation (S2) are as follows: A(r, t)

(82)

=n(r, t)—x is the modified order parameter, that is, deviation of the probability for the occupation of the site r by an atom
of the specific kind A from the fully disordered state in the alloy, x=N,/N the total concentration of the component A, N
and N are respectively the number of atoms of the component A and total number of atomic sites, ¢,(t) the concentration
of vacancies, and /{r—t’)xc, is the probability for an atomic jump from a site #’ to a site r per a unit of time. The Gibbs
free energy of mixing in a substitutional alloy can be written as*

F= %ZV(;’ —r"n(r)n(r')+ ﬁZ[n(r)lnn(r) +(1—n(r))In(1- n(r))] , (S3)

where the first term is the internal energy with V(r—+') being the interaction potential of atoms occupying the sites r and
r', while the second term is the entropy of mixing. The second term is obtainable from the general Boltzmann equation
S=kgln W, where W=N!/N,!(N-N,)!. Taking in account the Stirling formula, i.e., InN!=NInN—N, after algebraic transfor-
mations the entropy in the completely disordered state can be written as
S, =—Nky[ xInx+(1-x)In(1-x) |. (S4)
In the case of partially ordered alloy, i.e., when the probability for finding of an atom A in a site r differs from x, equa-
tion (S4) can be rewritten as S=—k; > [nlnn+(1-n)In(l-n)]. Then, neglecting high-power terms in the expansions of
In(1+A/x)=A/x—A*(2x*)+... and In[1-A/(1-x)]~>—A/(1-x)—-A*/[2(1-x)*]-... and taking into account that Y A(r)=0

and ) A’(r)=0 we obtain that the change in the Gibbs free energy is \
AF =lZ[V(r ~r') +—6ﬁ L JAMAF') (S5)
200 x(1-x)
where &, is the Kronecker delta. The functional derivative of AF on A(#') is”
SAF B
———=>[V(r—-r)+ 8. JA(r) . S6
SA(r") Zr:[ ( ) x(1-x) A (56)

Then, by using the convolution theorem for the Fourier transformation, equation (S2) for relaxation of the order pa-

rameter can be rewritten as an equation describing growth of concentration wave with the amplitude A(k, £):
t
AED - 2Oy L _judoaies (s7)
ot 25 x(1—x)
where A(k), L(k), and V(k) are the Fourier transforms of A(r), I{r—+'), and V(r—r').
By analyzing the stability of the system with respect to growth of concentration waves, we get that”

v =-Sl® (59)
x(1—x)
where T. is the temperature for the order-disorder transition. As a result, we obtain that
dA(kt) _ LIkT(®) T, ~T(1) ¢, (1
o 2 T 1-x

For the body-centered cubic (bcc) lattice and k=2n/a, where a is the lattice constant, in which each lattice point has 8

Ak,t) . (89)

nearest neighbors, we obtain that
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L(k)=Y I"(R)exp(ikR) = I"Y exp| -i(b, +b, + b,)(ha, + na, +1a,)|=8I" , (S10)

where R=r—t', a; (i=1, 2, 3) are primitive vectors of the lattice, h, n, and [ are integers which are equal to either 1 or —1,
and b; are reciprocal lattice vectors, so that a;b=2nJj.

“By definition, the functional derivative ;AA(F) is a coefficient of JA(r') in the relation of JAF = j'AF)cSA( r')dr'.
r

For a variation of AE, we have from equation (S5) that

OAF = lE[V(r —r')+ L@ﬂ, HA®@)SA(r") + A(r")OA(r)}
= x(1—x)

S ARSIV -r)+—L s 1A
r r x(l—x)

> YAm |V (r-r)+ b 8. 10A(r")dr'
r r X(l —)C)

“Substitution of equation (S6) into equation (S2) gives that

aA(r’t) — _& _ ’ r _ n 4 ”
S g ST r V=AY 2(1_ STE 8,00

As Zfr r')d.,. = (r—r"), we have that

8A(r,t) _xc,
Py ﬁ%G(R)A(r R)- 20 _x)%jF(R)A(r R),

where R=r—r"and G(r—r")=Y.I'(r—r"\V(r'—1").

As Y GR)A(r—R)=G*A and ) I'(R)A(r—R)=1I *A, that is, the convolution of two functions, we get that
R R

0 <,
ot —Xx)
where F[A]=A(k) is the Fourier transform of A(r), k is the wave vector of the concentration wave with amplitude of A,

F[G], and F[ 7] are the Fourier transforms of G(R) and /{R). In order to calculate IF[G], we note that
Gr-r")=GR)=>VR—-(r—r)(r—-r)=>VR-R[(R)=V=*T,
r' R’

FITIF(A]

B Y ]F[ ]]F[A

where R'=r—r'.
“The order parameter can be represented as a plane-expansion
A(r) =Y A(k)e™ + A" (k)e™ .
k

Substituting this expansion into equation (S5) and taking in account, for simplicity, only a one concentration wave —
with a wave vector k, we get that

AF = %E[V(r —r')+ —6(1‘8 AR + A" (k)e ™ [A(K)e™ + A" (k)e ™]
ror' X

—x)
— l 2 2ikr ﬁa ik(r—r'")
_2A (k);e Z{V(r r')+ o x)}e +c.c.

l 2 ot /3 rr' ik(r—r')
+ 2|A(k)| ;;[V(r r )+—x(1—x)} e +c.c.

We also note that

Z|:V(r—r') +—ﬁ8"' } e ) =v(k)+ P

x(1—x) x(1—x)

+2ikr

As the terms with A%(k) and their c.c. are equal to zero because )’ e™" =0, so that the change of the Gibbs energy

of mixing is
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_ 2 P
AF = %|A(k)| [V(k) e _x)} :

When T=T.(k), we have that AF=0 and, finally, one obtains equation (S8).

We take into account atomic jumps from nearest lattice sites ' only, which are located at a distance of av3/2 from
the site r, and assume that atomic jumps have the same probability from all the nearest sites, so that /{r—+')=7"

According to the Einstein relation for the Brownian motion, we have that the diffusion coefficient for the atomic
jumps to nearest lattice sites in the bec lattice is

p-L By
6 2
Then, we have that
Lk, 1) :M’
a

where D=Dyexp(-En/ksT) is the diffusion coefficient, E,, is the activation energy for atomic diffusion (or enthalpy of va-
cancy migration), and D, is the pre-exponential factor.
Therefore, equation (S9) can be rewritten as
%—a(t)Azo , (S11)
dt
where a=32D(t)(T—T)c.(t)/[Ta*(1-x)], whose solution is
tZ
At)= A(O)exp[_[a(t)dt] , (S12)
tl
where and t#, t, the starting and finishing moments of ordering (disordering) at T<T. (T>T.). The quantity of ¢,(f) can be
found from the relaxation equation of the Bloch type
de, c,(T)—c,
dt T

where ceq(T)=exp(—E./ksT) is the equilibrium concentration of vacancies, E, the enthalpy of vacancy formation, and

> (S13)

7=L*/D the relaxation time, which is the characteristic time of vacancy life between its formation and annihilation at
crystallite boundaries, and L the crystalline grain diameter. The solution of equation (S13) [or equation (3) in the main
body] is as follows:
1" 1° E 1%
c,(t)=exp ——j'exp[—Em [T(t)dt ] |x]| c, (0)+—Iexp ——+—j'exp[—Em /T(,)]dt, |dt, |,
TO 0 To 0 T(tl) To 0
where %=L?D, and E=E+E..
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