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Section 1: Chemical ordering/disordering in substitutional alloys 
In a system close enough to its equilibrium, the general equation for relaxation of the order parameter (r, t) varying in 
space (r) and time (t) reads1,2,3 
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where =kBT, kB is the Boltzmann constant, T is temperature in the system,  is the characteristic frequency of the relax-
ation process, and F/(r) is the functional derivative of the free energy of the system.  

For a substitutional alloy, equation (S1) can be rewritten in a discrete approximation for chemical ordering via atomic 
diffusion through vacancies in the atomic lattice,  
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which is similar to that introduced previously, for instance, in ref.4. The notations in equation (S2) are as follows: (r, t) 
=n(r, t)x is the modified order parameter, that is, deviation of the probability for the occupation of the site r by an atom 
of the specific kind A from the fully disordered state in the alloy, x=NA/N the total concentration of the component A, NA 
and N are respectively the number of atoms of the component A and total number of atomic sites, cv(t) the concentration 
of vacancies, and (rr)xcv is the probability for an atomic jump from a site r to a site r per a unit of time. The Gibbs 
free energy of mixing in a substitutional alloy can be written as4  
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where the first term is the internal energy with V(rr) being the interaction potential of atoms occupying the sites r and 
r, while the second term is the entropy of mixing. The second term is obtainable from the general Boltzmann equation 
S=kBlnW, where W=N!/NA!(NNA)!. Taking in account the Stirling formula, i.e., lnN!NlnNN, after algebraic transfor-
mations the entropy in the completely disordered state can be written as  

0 B ln (1 )ln(1 )S Nk x x x x       .                                 (S4) 

In the case of partially ordered alloy, i.e., when the probability for finding of an atom A in a site r differs from x, equa-
tion (S4) can be rewritten as B [ ln (1 )ln(1 )]S k n n n n    r . Then, neglecting high-power terms in the expansions of 
ln(1+/x)=/x2/(2x2)+… and ln[1/(1x)]/(1x)2/[2(1x)2]… and taking into account that ( ) 0 r r

\ and 3 ( ) 0 r r  we obtain that the change in the Gibbs free energy is 
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where rr is the Kronecker delta. The functional derivative of F on (r) isǂ1  

[ ( ) ] ( )
( ) (1 )

βδ F V δ
δ x x 
    
 

 r r
r

r r r
r

 .                             (S6) 

Then, by using the convolution theorem for the Fourier transformation, equation (S2) for relaxation of the order pa-
rameter can be rewritten as an equation describing growth of concentration wave with the amplitude A(k, t)ǂ2: 
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where A(k), L(k), and V(k) are the Fourier transforms of (r), (rr), and V(rr).    
By analyzing the stability of the system with respect to growth of concentration waves, we get thatǂ3 
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where Tc is the temperature for the order-disorder transition. As a result, we obtain that  
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For the body-centered cubic (bcc) lattice and k=2/a, where a is the lattice constant, in which each lattice point has 8 

nearest neighbors, we obtain that 
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where R=rr, ai (i=1, 2, 3) are primitive vectors of the lattice, h, n, and l are integers which are equal to either 1 or 1, 
and bi are reciprocal lattice vectors, so that aibj=2ij.  
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For a variation of F, we have from equation (S5) that 
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ǂ2Substitution of equation (S6) into equation (S2) gives that
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where []=A(k) is the Fourier transform of (r), k is the wave vector of the concentration wave with amplitude of A, 
[G], and [] are the Fourier transforms of G(R) and (R).  In order to calculate [G], we note that 
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where R= r r. 
 
ǂ3The order parameter can be represented as a plane-expansion

i i( ) ( )e ( )ekr kr

k
r A k A k    . 

Substituting this expansion into equation (S5) and taking in account, for simplicity, only a one concentration wave – 
with a wave vector k, we get that  
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 We also note that 

i ( )( ) e ( )
(1 ) (1 )

kβδ βV V k
x x x x





       
 r rrr

r
r r

 
. 

As the terms with A2(k) and their c.c. are equal to zero because 2ie 0k  r
r , so that the change of the Gibbs energy 

of mixing is  
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When T=Tc(k), we have that F=0 and, finally, one obtains equation (S8). 
 
We take into account atomic jumps from nearest lattice sites r only, which are located at a distance of 3 / 2a

 
from 

the site r, and assume that atomic jumps have the same probability from all the nearest sites, so that (rr).  
 According to the Einstein relation for the Brownian motion, we have that the diffusion coefficient for the atomic 

jumps to nearest lattice sites in the bcc lattice is 
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Then, we have that 
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where D=D0exp(-Em/kBT) is the diffusion coefficient, Em is the activation energy for atomic diffusion (or enthalpy of va-
cancy migration), and D0 is the pre-exponential factor.  

Therefore, equation (S9) can be rewritten as  
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where =32D(t)(TcT)cv(t)/[Ta2(1x)], whose solution is  
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where and t1, t2 the starting and finishing moments of ordering (disordering) at T<Tc (T>Tc). The quantity of cv(t) can be 
found from the relaxation equation of the Bloch type 
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where ceq(T)=exp(Ev/kBT) is the equilibrium concentration of vacancies, Ev the enthalpy of vacancy formation, and 
=L2/D the relaxation time, which is the characteristic time of vacancy life between its formation and annihilation at 
crystallite boundaries, and L the crystalline grain diameter. The solution of equation (S13) [or equation (3) in the main 
body] is as follows: 
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where 0=L2/D0 and E=Em+Ev. 
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