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Section 1: Derivation of eigenvalue equation 
A silver cylinder, with cylindrical interface infinitely extending along the z axis, is surrounded with air. Agε  and dε  are 
the dielectric permittivity of the silver and air, respectively. The amplitudes zE , zH , ρE , ρH , φE , φH  are the com-
ponents of the cylindrical electromagnetic field propagation along the z axis which are defined by harmonics of the form: 

m ( )exp( i i )  jU ρ mφ qz  ， j=1, 2; m=0, 1, 2, 3, where jmU  are cylindrical functions of order m and the radial coordi-
nate These amplitudes are shown in Table 1, in which R is radius of the sliver cylinder.  
 

Table 1 | Cylindrical interface own mode components1 

   

jU  Core: , 1ρ R j   Cladding: , 2ρ R j    

zE   1 1mA I χ ρ   2 2mA K χ ρ  

zH   1 1mB I χ ρ   2 2mB K χ ρ  

ρE      0
1 1 1 1 2

1 1
m m

mkqA I χ ρ B I χ ρ
iχ χ ρ

       0
2 2 2 2 2

2 2
m m

mkqA K χ ρ B K χ ρ
iχ χ ρ

   

ρH      g 0
1 1 1 1 2

1 1

A
m m

ε mkqB I χ ρ A I χ ρ
iχ χ ρ

      0
2 2 2 2 2

2 2

d
m m

ε mkqB K χ ρ A K χ ρ
iχ χ ρ

   

φE     0
1 1 1 1 2

1 1
m m

k mqB I χ ρ A I χ ρ
iχ χ ρ

      0
2 2 2 2 2

2 2
m m

k mqB K χ ρ A K χ ρ
iχ χ ρ

   

φH     0 Ag
1 1 1 1 2

1 1
m m

k ε mqA I χ ρ B I χ ρ
iχ χ ρ

     0 d
2 2 2 2 2

2 2
m m

k ε mqA K χ ρ B K χ ρ
iχ χ ρ

   

 
2 2 2
1 0 Agχ β k ε   2 2 2

2 0 dχ β k ε   

 
mI — modified Bessel function of order m; ( ) d / dm mI x I x  . 

mK — modified Hankel function of order m; ( ) d / dm mK x K x  . 
Based on the electromagnetic field components in Table 1 and the corresponding boundary conditions of electromag-

netic field components, the relationship between A1 and A2, B1 and B2 can be written as  
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1 21 2
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1 1 1 1 2 2 2 22 2

1 21 2

m m m m

Ag d
m m m m

k kmq mqB I χ ρ A I χ ρ B K χ ρ A K χ ρ
iχ iχχ ρ χ ρ

k ε k εmq mqA I χ ρ B I χ ρ A K χ ρ B K χ ρ
iχ iχχ ρ χ ρ

    


      

 .           (2) 

Substituting Eq. (1) into Eq. (2), a system of homogeneous equations for A1 and B1 can be expressed as  

     
   

   
     

10 0
1 1 1 2 12 2

1 2 11 2

0 g 1 0
1 2 1 1 12 2

1 2 1 1 2

[ ] 0

[ ] 0

m
m m m

m

A m d
m m m

m

I χ ρk kmq mqI χ ρ A I χ ρ K χ ρ B
iχ K χ ρ iχχ ρ χ ρ

k ε I χ ρ k ε mq mqI χ ρ K χ ρ A I χ ρ B
iχ K χ ρ iχ χ ρ χ ρ

  
         


          
 

 .          (3) 

Eq. (3) can be further written as  
1 1 1

2 2 1
0

M N A
M N B
   

   
   

 .                           (4) 

where  
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χ ρ χ ρ
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                         (5) 

For TM01 mode, m=0 and Hz=0, thus B1=B2=0. So that M1=M2=0 in Eq. (5). If there is a solution to TM01 mode, A1 and 
B1 in Eq. (4) cannot be all equal to zero, thus the characteristic determinant of Eq. (4) must equal to zero, and can be ex-
pressed as 

   
   0 Ag 0 1 0 d

0 1 0 2
1 0 2 1

=0
k ε I χ ρ k ε

I χ ρ K χ ρ
iχ K χ ρ iχ

    .                          (6) 

In addition, taking account of 0 1 0 1= ,  =-I I K K  , Eq. (6) can be written as 
Ag d1 1 1 2

0 1 1 0 2 2

( ) ( )
( ) ( )

ε εI χ R K χ R
I χ R χ K χ R χ

   .                               (7) 

That is the eigenvalue equation of TM01 mode. 
Similarly, for HEmn/EHmn mode, m≠0; Hz≠0 and Ez≠0, thus B1≠0, A1≠0. The characteristic determinant of Eq. (4) 

must be equal to zero, and can be expressed as 
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.          (8) 

Let 1 1W χ ρ , 2 2W χ ρ , Eq. (8) can be obatined as 
 
 

 
 

 
 

 
 

Ag Ag1 2 1 22 d d
2 2 2 2

1 1 2 2 1 1 2 21 2 1 2

1 1 1 1= m m m m

m m m m

ε εI W K W I W K Wε ε
m

W I W K W W I W W K W WW W W W
        

                     
.     (9) 

Eq. (9) can be simplified as  

  Ag2 d
Ag d2 2 2 2

1 2 1 2

1 1 =
ε ε

m S T ε S ε T
W W W W

  
         

 ,                     (10) 

where 
 
 

 
 

1 2

1 1 2 2

1 1,m m

m m

I W K W
S T

W I W W K W
 

    .                          (11) 

Furthermore, Eq. (10) can be written as 
2

2 2 2d d d d
2 2 2 2

Ag Ag Ag Ag1 2 1 2

1 1 1 1 11 1 4
2 2

ε ε ε εTS T T m
ε ε ε εW W W W

       
                             

 ,            (12) 

where ‘±’ represents the eigenvalue equation of EHmn and HEmn modes, respectively. Additionally, since the radial number 
of EHmn/HEmn mode can only take n=1, as the radial field distribution has only one maximum at the metal-air interface. 
And for each order m, there is only one solution for Eq. (12), that is HEm1 mode for m≥ 12. 
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Section 2: Enhancement factor of the silver tip directly illuminated by far-filed excitation light 
We compared the enhancement factor (EF) of the grating-assisted coupling silver tip with far-filed excitation light di-
rectly illuminating the silver tip (Fig. S1(a)). The excitation field TFSF with polarization parallel to the tip axis is used in 
this case. Figures S1(b) and S1(d) show the non-gap and gap mode electric field intensity distributions located 1 nm be-
low the tip apex, respectively. Due to the propagating loss, the EF of grating-assisted tip is smaller than that of direction 
illumination of the silver tip with far-filed excitation light. However, the EF of grating-assistant tip is still within an ac-
ceptable range3.  
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Fig. S1 | (a) Sketch map of the silver tip directly illuminated by far-filed excitation light; Non-gap (b) and gap mode (d) electric field intensity 

distribution located 1 nm below the silver tip; Non-gap (c) and gap mode (e) electric intensity distribution in the x-z plane. 
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