# Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip 

Fanfan Lu ${ }^{1}$, Wending Zhang ${ }^{1 *}$, Ligang Huang ${ }^{2}$, Shuhai Liang ${ }^{1}$, Dong Mao ${ }^{1}$, Feng Gao³, Ting Mei ${ }^{*}$ and Jianlin Zhao ${ }^{1}$

${ }^{1}$ MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China; ${ }^{2}$ Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing 400044, China; ${ }^{3}$ MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China

* Correspondence: W D Zhang, Email: zhangwd@nwpu.edu.cn; T Mei, Email: ting.mei@ieee.org


## This file includes:

Section 1: Derivation of eigenvalue equation
Section 2: Enhancement factor of the silver tip directly illuminated by far-filed excitation light

## Opto-Electronic Advances

## Section 1: Derivation of eigenvalue equation

A silver cylinder, with cylindrical interface infinitely extending along the $z$ axis, is surrounded with air. $\varepsilon_{\text {Ag }}$ and $\varepsilon_{\mathrm{d}}$ are the dielectric permittivity of the silver and air, respectively. The amplitudes $E_{z}, H_{z}, E_{\rho}, H_{\rho}, E_{\varphi}, H_{\varphi}$ are the components of the cylindrical electromagnetic field propagation along the $z$ axis which are defined by harmonics of the form: $U_{j \mathrm{~m}}(\rho) \exp ( \pm \mathrm{i} m \varphi \pm \mathrm{i} q z), \quad j=1,2 ; m=0,1,2,3$, where $U_{j m}$ are cylindrical functions of order $m$ and the radial coordinate $\rho$. These amplitudes are shown in Table 1, in which $R$ is radius of the sliver cylinder.

Table 1 | Cylindrical interface own mode components ${ }^{1}$

|  |  |  |  |
| :--- | :--- | :--- | :--- |
| $U_{j}$ | Core: $\rho \leq R, j=1$ | Cladding: $\rho \geq R, j=2$ |  |
| $E_{z}$ | $A_{1} I_{m}\left(\chi_{1} \rho\right)$ | $A_{2} K_{m}\left(\chi_{2} \rho\right)$ |  |
| $H_{z}$ | $B_{1} I_{m}\left(\chi_{1} \rho\right)$ | $B_{2} K_{m}\left(\chi_{2} \rho\right)$ |  |
| $E_{\rho}$ | $A_{1} I_{m}^{\prime}\left(\chi_{1} \rho \frac{q}{i \chi_{1}}-B_{1} I_{m}\left(\chi_{1} \rho\right) \frac{m k_{0}}{\chi_{1}^{2} \rho}\right.$ | $A_{2} K_{m}^{\prime}\left(\chi_{2} \rho\right) \frac{q}{i \chi_{2}}-B_{2} K_{m}\left(\chi_{2} \rho\right) \frac{m k_{0}}{\chi_{2}^{2} \rho}$ |  |
| $H_{\rho}$ | $B_{1} I_{m}^{\prime}\left(\chi_{1} \rho\right) \frac{q}{i \chi_{1}}+A_{1} I_{m}\left(\chi_{1} \rho\right) \frac{\varepsilon_{A g} m k_{0}}{\chi_{1}^{2} \rho}$ | $B_{2} K_{m}^{\prime}\left(\chi_{2} \rho\right) \frac{q}{i \chi_{2}}+A_{2} K_{m}\left(\chi_{2} \rho\right) \frac{\varepsilon_{d} m k_{0}}{\chi_{2}^{2} \rho}$ |  |
| $E_{\varphi}$ | $B_{1} I_{m}^{\prime}\left(\chi_{1} \rho\right) \frac{k_{0}}{i \chi_{1}}+A_{1} I_{m}\left(\chi_{1} \rho\right) \frac{m q}{\chi_{1}^{2} \rho}$ | $B_{2} K_{m}^{\prime}\left(\chi_{2} \rho\right) \frac{k_{0}}{i \chi_{2}}+A_{2} K_{m}\left(\chi_{2} \rho\right) \frac{m q}{\chi_{2}^{2} \rho}$ |  |
| $H_{\varphi}$ | $-A_{1} I_{m}^{\prime}\left(\chi_{1} \rho\right) \frac{k_{0} \varepsilon_{\text {Ag }}}{i \chi_{1}}+B_{1} I_{m}\left(\chi_{1} \rho\right) \frac{m q}{\chi_{1}^{2} \rho}$ | $-A_{2} K_{m}^{\prime}\left(\chi_{2} \rho\right) \frac{k_{0} \varepsilon_{\mathrm{d}}}{i \chi_{2}}+B_{2} K_{m}\left(\chi_{2} \rho\right) \frac{m q}{\chi_{2}^{2} \rho}$ |  |
|  | $\chi_{1}^{2}=\beta^{2}-k_{0}^{2} \varepsilon_{A_{g}}$ | $\chi_{2}^{2}=\beta^{2}-k_{0}^{2} \varepsilon_{\mathrm{d}}$ |  |

$I_{m}$ - modified Bessel function of order $m ; I_{m}^{\prime}(x)=\mathrm{d} I_{m} / \mathrm{d} x$.
$K_{m}-$ modified Hankel function of order $m ; K_{m}^{\prime}(x)=\mathrm{d} K_{m} / \mathrm{d} x$.
Based on the electromagnetic field components in Table 1 and the corresponding boundary conditions of electromagnetic field components, the relationship between $A_{1}$ and $A_{2}, B_{1}$ and $B_{2}$ can be written as

$$
\begin{gather*}
\left\{\begin{array}{l}
A_{2}=A_{1} \frac{I_{m}\left(\chi_{1} \rho\right)}{K_{m}\left(\chi_{2} \rho\right)} \\
B_{2}=B_{1} \frac{I_{m}\left(\chi_{1} \rho\right)}{K_{m}\left(\chi_{2} \rho\right)}
\end{array},\right.
\end{gather*}\left\{\begin{array}{c}
B_{1} I_{m}^{\prime}\left(\chi_{1} \rho\right) \frac{k_{0}}{i \chi_{1}}+A_{1} I_{m}\left(\chi_{1} \rho\right) \frac{m q}{\chi_{1}^{2} \rho}=B_{2} K_{m}^{\prime}\left(\chi_{2} \rho\right) \frac{k_{0}}{i \chi_{2}}+A_{2} K_{m}\left(\chi_{2} \rho\right) \frac{m q}{\chi_{2}^{2} \rho}  \tag{1}\\
-A_{1} I_{m}^{\prime}\left(\chi_{1} \rho\right) \frac{k_{0} \varepsilon_{A g}}{i \chi_{1}}+B_{1} I_{m}\left(\chi_{1} \rho\right) \frac{m q}{\chi_{1}^{2} \rho}=-A_{2} K_{m}^{\prime}\left(\chi_{2} \rho\right) \frac{k_{0} \varepsilon_{d}}{i \chi_{2}}+B_{2} K_{m}\left(\chi_{2} \rho\right) \frac{m q}{\chi_{2}^{2} \rho} \tag{2}
\end{array} .\right.
$$

Substituting Eq. (1) into Eq. (2), a system of homogeneous equations for $A_{1}$ and $B_{1}$ can be expressed as

$$
\left\{\begin{array}{c}
I_{m}\left(\chi_{1} \rho\right)\left(\frac{m q}{\chi_{1}^{2} \rho}-\frac{m q}{\chi_{2}^{2} \rho}\right) A_{1}+\left[I_{m}^{\prime}\left(\chi_{1} \rho\right) \frac{k_{0}}{i \chi_{1}}-\frac{I_{m}\left(\chi_{1} \rho\right)}{K_{m}\left(\chi_{2} \rho\right)} K_{m}^{\prime}\left(\chi_{2} \rho\right) \frac{k_{0}}{i \chi_{1}}\right] B_{1}=0  \tag{3}\\
{\left[-I_{m}^{\prime}\left(\chi_{1} \rho\right) \frac{k_{0} \varepsilon_{A g}}{i \chi_{1}}+\frac{I_{m}\left(\chi_{1} \rho\right)}{K_{m}\left(\chi_{2} \rho\right)} K_{m}^{\prime}\left(\chi_{2} \rho\right) \frac{k_{0} \varepsilon_{d}}{i \chi_{1}}\right] A_{1}+I_{m}\left(\chi_{1} \rho\right)\left(\frac{m q}{\chi_{1}^{2} \rho}-\frac{m q}{\chi_{2}^{2} \rho}\right) B_{1}=0}
\end{array} .\right.
$$

Eq. (3) can be further written as

$$
\left[\begin{array}{ll}
M_{1} & N_{1}  \tag{4}\\
M_{2} & N_{2}
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right]=0 .
$$

where

## Opto-Electronic Advances

$$
\left\{\begin{array}{l}
M_{1}=I_{m}\left(\chi_{1} \rho\right)\left(\frac{m q}{\chi_{1}^{2} \rho}-\frac{m q}{\chi_{2}^{2} \rho}\right)  \tag{5}\\
N_{1}=I_{m}^{\prime}\left(\chi_{1} \rho\right) \frac{k_{0}}{i \chi_{1}}-\frac{I_{m}\left(\chi_{1} \rho\right)}{K_{m}\left(\chi_{2} \rho \rho\right.} K_{m}^{\prime}\left(\chi_{2} \rho\right) \frac{k_{0}}{i \chi_{1}} \\
M_{2}=-I_{m}^{\prime}\left(\chi_{1} \rho\right) \frac{k_{0} \varepsilon_{A_{g}}}{i \chi_{1}}+\frac{I_{m}\left(\chi_{1} \rho\right)}{K_{m}\left(\chi_{2} \rho\right)} K_{m}^{\prime}\left(\chi_{2} \rho\right) \frac{k_{0} \varepsilon_{d}}{i \chi_{1}} \\
N_{2}=I_{m}\left(\chi_{1} \rho\right)\left(\frac{m q}{\chi_{1}^{2} \rho}-\frac{m q}{\chi_{2}^{2} \rho}\right)
\end{array}\right.
$$

For $\mathrm{TM}_{01}$ mode, $m=0$ and $H_{z}=0$, thus $B_{1}=B_{2}=0$. So that $M_{1}=M_{2}=0$ in Eq. (5). If there is a solution to $\mathrm{TM}_{01}$ mode, $A_{1}$ and $B_{1}$ in Eq. (4) cannot be all equal to zero, thus the characteristic determinant of Eq. (4) must equal to zero, and can be expressed as

$$
\begin{equation*}
-I_{0}^{\prime}\left(\chi_{1} \rho\right) \frac{k_{0} \varepsilon_{\text {Ag }}}{i \chi_{1}}+\frac{I_{0}\left(\chi_{1} \rho\right)}{K_{0}\left(\chi_{2} \rho\right)} K_{0}^{\prime}\left(\chi_{2} \rho\right) \frac{k_{0} \varepsilon_{\mathrm{d}}}{i \chi_{1}}=0 . \tag{6}
\end{equation*}
$$

In addition, taking account of $I_{0}^{\prime}=I_{1}, K_{0}^{\prime}=-K_{1}$, Eq. (6) can be written as

$$
\begin{equation*}
\frac{I_{1}\left(\chi_{1} R\right)}{I_{0}\left(\chi_{1} R\right)} \frac{\varepsilon_{\mathrm{Ag}}}{\chi_{1}}=-\frac{K_{1}\left(\chi_{2} R\right)}{K_{0}\left(\chi_{2} R\right)} \frac{\varepsilon_{\mathrm{d}}}{\chi_{2}} . \tag{7}
\end{equation*}
$$

That is the eigenvalue equation of $\mathrm{TM}_{01}$ mode.
Similarly, for $\mathrm{HE}_{\mathrm{mn}} / \mathrm{EH}_{\mathrm{mn}}$ mode, $m \neq 0 ; H_{z} \neq 0$ and $E_{z} \neq 0$, thus $B_{1} \neq 0, A_{1} \neq 0$. The characteristic determinant of Eq. (4) must be equal to zero, and can be expressed as

$$
\begin{equation*}
\left(\frac{m q}{\chi_{1}^{2} \rho}-\frac{m q}{\chi_{2}^{2} \rho}\right)^{2}=\left[\frac{I_{m}^{\prime}\left(\chi_{1} \rho\right)}{I_{m}\left(\chi_{1} \rho\right)} \frac{k_{0}}{\chi_{1}}-\frac{K_{m}^{\prime}\left(\chi_{2} \rho\right)}{K_{m}\left(\chi_{2} \rho\right)} \frac{k_{0}}{\chi_{2}}\right]\left[\frac{I_{m}^{\prime}\left(\chi_{1} \rho\right)}{I_{m}\left(\chi_{1} \rho\right)} \frac{k_{0} \varepsilon_{A g}}{\chi_{1}}-\frac{K_{m}^{\prime}\left(\chi_{2} \rho\right)}{K_{m}\left(\chi_{2} \rho\right)} \frac{k_{0} \varepsilon_{d}}{\chi_{2}}\right] . \tag{8}
\end{equation*}
$$

Let $W_{1}=\chi_{1} \rho, W_{2}=\chi_{2} \rho$, Eq. (8) can be obatined as

$$
\begin{equation*}
m^{2}\left(\frac{1}{W_{1}^{2}}-\frac{1}{W_{2}^{2}}\right)\left(\frac{\varepsilon_{\mathrm{Ag}}}{W_{1}^{2}}-\frac{\varepsilon_{\mathrm{d}}}{W_{2}^{2}}\right)=\left[\frac{1}{W_{1}} \frac{I_{m}^{\prime}\left(W_{1}\right)}{I_{m}\left(W_{1}\right)}-\frac{K_{m}^{\prime}\left(W_{2}\right)}{K_{m}\left(W_{2}\right)} \frac{1}{W_{2}}\right]\left[\frac{I_{m}^{\prime}\left(W_{1}\right)}{I_{m}\left(W_{1}\right)} \frac{\varepsilon_{\mathrm{Ag}}}{W_{1}}-\frac{K_{m}^{\prime}\left(W_{2}\right)}{K_{m}\left(W_{2}\right)} \frac{\varepsilon_{\mathrm{d}}}{W_{2}}\right] . \tag{9}
\end{equation*}
$$

Eq. (9) can be simplified as

$$
\begin{equation*}
m^{2}\left(\frac{1}{W_{1}^{2}}-\frac{1}{W_{2}^{2}}\right)\left(\frac{\varepsilon_{\mathrm{Ag}}}{W_{1}^{2}}-\frac{\varepsilon_{\mathrm{d}}}{W_{2}^{2}}\right)=(S-T)\left(\varepsilon_{\mathrm{Ag}} S-\varepsilon_{\mathrm{d}} T\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
S=\frac{1}{W_{1}} \frac{I_{m}^{\prime}\left(W_{1}\right)}{I_{m}\left(W_{1}\right)}, T=\frac{1}{W_{2}} \frac{K_{m}^{\prime}\left(W_{2}\right)}{K_{m}\left(W_{2}\right)} . \tag{11}
\end{equation*}
$$

Furthermore, Eq. (10) can be written as

$$
\begin{equation*}
S=\frac{T}{2}\left(1+\frac{\varepsilon_{\mathrm{d}}}{\varepsilon_{\mathrm{Ag}}}\right) \pm \frac{1}{2} \sqrt{\left(1+\frac{\varepsilon_{\mathrm{d}}}{\varepsilon_{\mathrm{Ag}}}\right)^{2} T^{2}-4\left[\frac{\varepsilon_{\mathrm{d}}}{\varepsilon_{\mathrm{Ag}}} T^{2}-m^{2}\left(\frac{1}{W_{1}^{2}}-\frac{1}{W_{2}^{2}}\right)\left(\frac{1}{W_{1}^{2}}-\frac{\varepsilon_{\mathrm{d}}}{\varepsilon_{\mathrm{Ag}}} \frac{1}{W_{2}^{2}}\right)\right]}, \tag{12}
\end{equation*}
$$

where ' $\pm$ ' represents the eigenvalue equation of $\mathrm{EH}_{m n}$ and $\mathrm{HE}_{m n}$ modes, respectively. Additionally, since the radial number of $\mathrm{EH}_{m n} / \mathrm{HE}_{m n}$ mode can only take $n=1$, as the radial field distribution has only one maximum at the metal-air interface. And for each order $m$, there is only one solution for Eq. (12), that is $\mathrm{HE}_{m 1}$ mode for $m \geq 1^{2}$.

## Opto-Electronic Advances DOI: 10.29026/oea.2018.180010

Section 2: Enhancement factor of the silver tip directly illuminated by far-filed excitation light
We compared the enhancement factor (EF) of the grating-assisted coupling silver tip with far-filed excitation light directly illuminating the silver tip (Fig. S1(a)). The excitation field TFSF with polarization parallel to the tip axis is used in this case. Figures $\operatorname{S1}(\mathrm{b})$ and $\mathrm{S} 1(\mathrm{~d})$ show the non-gap and gap mode electric field intensity distributions located 1 nm below the tip apex, respectively. Due to the propagating loss, the EF of grating-assisted tip is smaller than that of direction illumination of the silver tip with far-filed excitation light. However, the EF of grating-assistant tip is still within an acceptable range ${ }^{3}$.


Fig. S1 | (a) Sketch map of the silver tip directly illuminated by far-filed excitation light; Non-gap (b) and gap mode (d) electric field intensity distribution located 1 nm below the silver tip; Non-gap (c) and gap mode (e) electric intensity distribution in the $x$-z plane.

## Supplementary information references

1. Gurevich V S, Libenson M N. Surface-Polaritons Propagation Along Micropipettes. Ultramicroscopy 57, 277-281 (1995).
2. Novotny L, Hafner C. Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys Rev E 50, 4094-4106 (1994).
3. Kazemi-Zanjani N, Vedraine S, Lagugné-Labarthet F. Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light. Opt Express 21, 25271 (2013).
