
DOI: 10.29026/oea.2021.200060

All-optical computing based on convolutional
neural networks
Kun Liao1, Ye Chen1, Zhongcheng Yu1, Xiaoyong Hu1,2*,
Xingyuan Wang3*, Cuicui Lu4, Hongtao Lin5*, Qingyang Du6, Juejun Hu6
and Qihuang Gong1,2
1State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter, Beijing Academy of

Quantum Information Sciences, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China;
2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 3College of Mathematics and Physics, Beijing

University of Chemical Technology, Beijing 100029, China; 4Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,

School of Physics, Beijing Institute of Technology, Beijing 100081, China; 5College of Information Science & Electronic Engineering, Zhejiang

University, Hangzhou 310027, China; 6Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge,

MA 02139, USA.
*Correspondence: XY Hu, E-mail: xiaoyonghu@pku.edu.cn; XY Wang, E-mail: wang_xingyuan@mail.buct.edu.cn;

HT Lin, E-mail: hometown@zju.edu.cn

This file includes:

Section 1: Convolutional neural networks
Section 2: Method of adjusting weight ω
Section 3: All-optical transcendental equation solvers
Section 4: Multifarious logic gate operators
Section 5: Fault tolerance of our networks
Section 6: Power consumption of optical neural network devices
Section 7: Performance benchmark and significance of this work

Supplementary information for this paper is available at https://doi.org/10.29026/oea.2021.200060

Opto-Electronic
Advances

Supplementary information
2021, Vol. 4, No. 11

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021. Published by Institute of Optics and Electronics, Chinese Academy of Sciences.

200060-S1

https://doi.org/10.29026/oea.2021.200060
https://doi.org/10.29026/oea.2021.200060
http://creativecommons.org/licenses/by/4.0/.

 Section 1: Convolutional neural networks
Convolutional Neural Network (CNN) is one of the representative algorithms of deep learning, which is a type of Feed-
forward Neural Networks including convolution computation and usually has a depth structure. They are widely ap-
plied in the fields of natural language processing and image recognition1. CNNs usually process data in the form of mul-
tiple arrays: one dimensional arrays for signals and sentences, two dimensional arrays for images and audio spectrums
and three dimensional arrays for videos and volumetric images2. Generally, CNNs contain convolutional layers, pooling
layers and fully-connected layers. In the convolutional layers there are convolutional kernels, padding and active func-
tions, which are all parameters of the convolutional layers. The unique advantages of high precision in image pro-
cessing benefit from the properties of local perception and parameter sharing of CNNs, maintaining high accuracy un-
der translation, rotation and scaling of samples.

Given that in our networks we need to input a single light or a sequence of light signals into the network, CNNs nat-
urally meet our demands because of their ability to protect signals from distortion. Moreover, comparing to fully-con-
nected layers, convolutional layers require only local connections and thus avoid large numbers of waveguide crossings.
The difference between a 1D convolutional layer and a fully-connected layer is showed in Fig. S1. A fully-connected lay-
er uses different weights in every connection, while in a convolutional layer a convolutional kernel, which has shared
weights in it, is used for addressing all signals in the current layer.

For the simplest 1D convolutional layer with stride = 1 (the step size of each movement is 1 in signal processing) and
only one input channel, the relationship between the input and the output can be described as:

yi = f(bias+
∑k−1

j=0
weightj × xi+j) , (S1)

yiwhere k is the size of the kernel, x is the input sequence, y is the output sequence, the bias is a constant for , and f(x) is
called the activation function which is usually nonlinear. However, for a fully-connected layer with the same structure,
the relationship between x and y changes into:

yi = f
(
bias+

∑l−1

j=0
weightij × xj

)
, (S2)

where l is the length of the input sequence, which is irrelevant in a convolutional layer. We use 1D convolutional net-
works to solve transcendental equations since shared weights in each layer are enough to control the network. We also
disable bias and f(x) considering that our devices are linear.

Cin 3× 3 K
2× 2 Cout

For 2D convolutional layers, the basic operation principle is similar to that of 1D convolutional layer and can be de-
scribed with matrices. For instance, if the input is a matrix with a size of and the kernel is a matrix with a
size of , then the output can be calculated as (stride = 1):

Cin =

[a11 a12 a13
a21 a22 a23
a31 a32 a33

]
,K =

[w11 w12
w21 w22

]
, (S3)

A1 =

[
a11 a12
a21 a22

]
,A2 =

[
a12 a13
a22 a23

]
,A3 =

[
a21 a22
a31 a32

]
,A4 =

[
a22 a23
a31 a33

]
,we define:

Cout =

[
A1 : K A2 : K
A3 : K A4 : K

]
, (S4)

An : K =
∑

i

∑
j AnijKij

[
r0 r1 · · ·

] r0 r1 0 0 · · ·
0 0 r1 r2 · · ·
...

...
...

...
. . .

where . We use 2D convolutional layers to train our CNNs for the multifarious logic gate operat-
ors and half-adder, because shared weights cannot meet our demands in these two scenarios. Thus, we transform the in-

put sequence from into and input it into CNNs. After the training process, we

only extract the weights corresponding to the non-zero positions. In this way, we can both avoid the problem that wave-
guides cannot cross and maximize the ability to control neural networks. We apply stochastic gradient descent (SGD) in
our optimizer as it exhibits good performances in the CNN learning process.

Opto-Electron Adv 4, 200060 (2021) https://doi.org/10.29026/oea.2021.200060

200060-S2

 Section 2: Method of adjusting weight ω

a b

We use a weight modulator (WM) positioned next to the transmission waveguide (TW) to adjust weight. WM is a small
segment of silicon waveguide which has the same width as that of TW (to ensure efficient coupling). Through con-
trolling the length () of WM and the gap width () between the WM and the waveguide, we can adjust magnitude and
phase of the weight.

As stated in optical waveguide theory, when light waves propagate in two coupled waveguides, power transfer
between the two waveguides periodically. When the two waveguides are close enough and the modes propagating
through the two waveguides are similar, the two waveguides can strongly couple to each other. If the two waveguides are
identical and each only supports a single mode, as in the case of our WM and TW, complete power transfer occurs
between the two coupled waveguides.

a b

a/L a b b
ω a b

Here we use L, , and to denote beat length in the coupled waveguide system, coupling length of two waveguides,
and gap width between the two waveguides, respectively. The amount of light power remaining in TW is dictated by the
ratio , while is readily adjusted by changing . As Fig. S2 shows, with increasing , L increases monotonically. We
can therefore adjust the magnitude of weight simply via choosing suitable and values (Fig. 2(b)).

a
b ω a b ω
0 2π ω

ω ω ±0.09

The beating length changes with b, and the phase accumulation scales with beating length. So, through controlling
and , we can adjust phase of weight . As Fig. 2(c) shows, by choosing suitable and , phase of weight can change
from to . In this work, we choose to adjust the magnitude of weight , while keeping phase in an almost constant
range. The magnitude of can be tuned from 0.3 to 0.95 when the variation range of the phase is rad. Another
alternative method is to vary the width of the WM waveguide, while keeping at equaling to the beat length to realize the

a cb

H

N

Convolutional layers

Convolutional kernels
Xh

l=conv (Kh
l−1, Xh

l−1)

Xl
h = conv(Kl−1

h ,Xl−1
h)

Xl
h Xl−1

h

Kl−1
h

Fig. S1 | Structure comparison of CNN with fully-connected network neural network. (a) The structure of a fully-connected network having

three fully-connected layers. (b) The structure of a 1D convolutional network having three 1D convolutional layers. (c) Schematic diagram of con-

volution neural network consisting of convolutional layers and convolutional kernels. H and N in the diagram represent the height and width of the

processed signal, respectively. The signal between layers is transmitted through a convolutional operation , Where h repres-

ents the sequence number of the signal to be processed, and represent the lth and (l–1)th layer’s convolutional signal states respectively,

and represents the convolutional kernel.

10
L

8

6L
(μ

m
)

L (μm)

b (μm)

4

2
0.05 0.10 0.15

Fig. S2 | Regulation mechanism of proposed weight modulator. The relationship between L and b, where the black points is the simulation

result, and the red line is the fit result. The illustration is the simulation result of the electric field distribution.

Opto-Electron Adv 4, 200060 (2021) https://doi.org/10.29026/oea.2021.200060

200060-S3

https://doi.org/10.29026/oea.2021.200060
https://doi.org/10.29026/oea.2021.200060
https://doi.org/10.29026/oea.2021.200060
https://doi.org/10.29026/oea.2021.200060

effective phase modulation.
ω

a b
ω ω ω

0 2π

A more efficient way to achieve a photonic computer is to maintain the magnitude of weight close to 1 (which min-
imizes insertion loss of the entire photonic circuit), while adjusting the phase in the optical neural network. This condi-
tion can be accomplished by choosing as an integer multiple of beat length L while varying to obtain the target phase
of . As Fig. S3 shows, using this approach, we can keep the magnitude of close to 1 and changing the phase of from

 to .

 Section 3: All-optical transcendental equation solvers

Training details

k

k

π

PyTorch, a custom package in Python was used to construct the theoretical modeling of our optical neural networks.
The calculation was based on 1D CNN used for the equation solver. We apply stochastic gradient descent (SGD) in the
learning process to compute the parameters and minimize the loss function related to the model’s performance. By
changing the parameter of the equation with a step size of 0.1, 12 training samples were obtained, which were used to
train the weight ω. 2,000 iterations of the algorithm were performed to optimize the network weights that can imple-
ment the predictive solution function. After that, parameter is chosen to increase 0.17 per step (to be different from
the training samples) to execute the task of the equation solver. Two arms of the “Y” structure waveguide correspond to
two kinds of weights, and the bifurcated waveguide is used as an element structure to extend the equal longitudinal
weight and variable lateral weight, thus two kinds of weights for each layer are obtained. The three-layer network has a
total of six kinds of weights, and one kind of weight in the third layer gives a negative value, indicating that the phase
difference is introduced.

Network performances with k =1.84 and 2.35

k

k

In order to show the practical performance of the equation solver, we experimentally demonstrated three of the pre-
dicted transcendental equations with different parameters k as 1.67, 1.84 and 2.35 respectively. Three structures similar
to the one shown in Fig. 1(c) were fabricated, each containing a different set of waveform discretization layers to gener-
ate light intensity distributions in the feeding waveguides into the 3-layer optical CNN corresponding to the three val-
ues. We make the maximum values of output intensity corresponding to the solutions of the equation. To illustrate the
performance of the equation solver, we compare the experimental results with theoretical predictions. Here we demon-
strate the rest of two results where =1.84 and 2.35 (Fig. S4). As we can see from the figure, the result shows that our
transcendental equation solvers have high accuracy. The maximum deviation between the actual solutions and the tar-
get solutions is no more than 5%, and most of them are no more than 3%.

1.0

0.8

0.6

0.4

0.2

0
0.020.03

0.04
b (μm)

n

t

0.05
0.06

0.07 0
1

2
3

4 5
6

789

t
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

a

3

Phase of ω (rad)n

2

1

2

3

1.75 π

0 π

0.25 π

0.50 π

0.75 π

1.00 π

1.25 π

1.50 π

0.064

0.058

0.053

0.047

0.042

0.036

0.031

0.025

0.020

b (μm)
b

Fig. S3 | Results of weight modulation in specific designed case. By regulating the gap width b between two waveguides and integer mul-

tiple of 2L (n=2 mL, m is an integer). (a) The magnitude of weight ω keeps near 1. (b) The phase of weight ω can be continuously adjusted from

0 to 2π.

Opto-Electron Adv 4, 200060 (2021) https://doi.org/10.29026/oea.2021.200060

200060-S4

https://doi.org/10.29026/oea.2021.200060
https://doi.org/10.29026/oea.2021.200060

 Section 4: Multifarious logic gate operators
Sixteen logic functions (representing exhaustive combinations of output results corresponding to all four possible input
signals 11, 10, 01, and 00 is 24= 16) have been realized in seven structures by optimizing every different weight of the
network and the combination between weights and control bits. Each structure can execute 3 or 4 logic functions with
appropriate control bit inputs. Here we present the results obtained on six of the seven structures (except the one dis-
cussed in the main text). As we can see from Fig. S5(a, c, e, g, i, k), when the weights and control bits of the network are
varied, multifarious logic gate operators are realized. The experimental results show that the high contracts are main-
tained in each structure capable of performing multiple logic functions. Distinguishability of 0 and 1 indicates that mul-
tifunctional logic can be implemented on one structure (Fig. S5(b, d, f, h, j, l)).

 Section 5: Fault tolerance of our networks
Optical neural network (ONN) offers excellent fault tolerance which is essential to scalable and defect-tolerant manufac-
turing of the all-optical chip. Taking the transcendental equation solver as an example, we mainly studied impact of two
types of imperfections, weight deviation and waveguide fracture on solution deviation. Mean absolute error (MAE) is
utilized to quantify the solution deviation:

MAE =

∑
|Ri − Ri0|
N×M

, (S5)

N
s Ri0

Ri

N

M is the number of output waveguides; is the number of predicted samples (predicted samples are defined as tran-
scendental equations of identical general form with different parameter); is the sequence number of the output
waveguide that is supposed to have max intensity for a predicted sample; is the sequence number of the output wave-
guide that has max intensity when given an input of the predicted sample. The summation covers all predicted samples,
divided by and M to get the MAE.

In traditional computer neural networks, the transmission of information between “neurons” depends on the weight
of their connections with each other. Similarly, by adjusting the amplitude and phase of the light field in the transmis-
sion process, ONNs can realize the information transmission between layers. Therefore, tolerance of ONN to weight
variations is crucial, which directly reflects the stability of ONNs. In our ONNs, since we only concern about the relat-
ive distribution of light intensity among output waveguides, only the phase difference and the amplitude ratio of two
weights in each neuron layers can have an impact on the accuracy of the results. As shown in Fig. S6, by changing the
amplitude ratio and phase difference of the weights in three layers separately, simulated variations in the MAE of the
outputs are presented.

Another possible cause of undesired deviation is propagation loss variation in the waveguides. For simplicity and
without losing generality, here we consider the extreme case where a waveguide segment is completely damaged such

0.4

0.3

In
te

ns
ity

 (a
.u

.)

0.2

0.1

0
0 5 10

Number of waveguide
15 20 25

−45

D
eviation

−40
−35
−30
−25
−20
−15
−10
−5
0
5
10
15
20Deviation

Theoretical
Simulation
Experimental

0.4

0.3

In
te

ns
ity

 (a
.u

.)

0.2

0.1

0
0 5 10

Number of waveguide
15 20 25

−45

D
eviation

−40
−35
−30
−25
−20
−15
−10
−5
0
5
10
15
20Deviation

Theoretical
Simulation
Experimental

a b

Fig. S4 | All-optical transcendental equation solver with different parameters k. (a) Distribution of output light intensity in the discretized

waveguide interval (k = 1.84). (b) Distribution of output light intensity in the discretized waveguide interval (k = 2.35). The arrows in the figure

refer to the location of the solutions. The horizontal axis is the number of discrete waveguides, the vertical axis on the left represents the output

signal intensity, and the vertical axis on the right represents the deviation between the experimental output signal and the theoretical output sig-

nal.

Opto-Electron Adv 4, 200060 (2021) https://doi.org/10.29026/oea.2021.200060

200060-S5

k = 2.18

that no optical signal can be transmitted into the neurons of the next layer. We found that the effect was only observed
around the damaged waveguide, and almost no effect was observed in waveguides far away from the damaged one. For
instance, in the predicted sample where , it should light up the waveguides numbered 2, 8, 13, 19, and 24. When
the first waveguide or the thirteenth waveguide in layer 1, layer 2, or layer 3 is damaged, we obtain outputs as shown in

1.2
0.8
0.4

0
4.3 dB

9.6 dB

7.8 dB

1.2
0.8
0.4

0
(0, 1)

Input state (A, B)
(1, 0)

1.0
0.6
0.2

In
te

ns
ity

 (a
.u

.)
Control bits 0110

Control bits 1010

Control bits 1001

Input state (A, B)
(1, 1)(0, 1)(0, 0)

1.2
1.0
0.8
0.6
0.4
0.2

0
(1, 0)

In
te

ns
ity

 (a
.u

.) Control bits 0110
Control bits 1010
Control bits 1001

Input state (A, B)
(1, 1)(0, 1)(0, 0)

1.2
1.0
0.8
0.6
0.4
0.2

0 (1, 0)

In
te

ns
ity

 (a
.u

.) Control bits 0110
Control bits 1010
Control bits 1001

Input state (A, B)
(1, 1)(0, 1)(0, 0)

1.2
1.0
0.8
0.6
0.4
0.2

0 (1, 0)

In
te

ns
ity

 (a
.u

.) Control bits 0110
Control bits 1010
Control bits 1001

Input state (A, B)
(1, 1)(0, 1)(0, 0)

1.2
1.0
0.8
0.6
0.4
0.2

0
(1, 0)

In
te

ns
ity

 (a
.u

.) Control bits 0110
Control bits 1010
Control bits 1001

1.2
0.8
0.4

0
4.0 dB

3.8 dB

1.2
0.8
0.4

0
(0, 1)

Input state (A, B)
(1, 0)

1.0
0.6
0.2

In
te

ns
ity

 (a
.u

.)

Control bits 0110

Control bits 1010

Control bits 1001

1.2
0.8
0.4

0
17.0 dB

15.1 dB

9.1 dB

1.2
0.8
0.4

0
(0, 1)

Input state (A, B)
(1, 0)

1.0
0.6
0.2

In
te

ns
ity

 (a
.u

.)

Control bits 0110

Control bits 1010

Control bits 1001

1.2
0.8
0.4

0
7.6 dB

9.0 dB

9.4 dB

1.2
0.8
0.4

0
(0, 1)

Input state (A, B)
(1, 0)

1.0
0.6
0.2

In
te

ns
ity

 (a
.u

.)

Control bits 0110

Control bits 1010

Control bits 1001

1.2
0.8
0.4

0
9.8 dB

8.7 dB

8.8 dB

9.9 dB

1.2
0.8
0.4

0
(0, 1)

Input state (A, B)
(1, 0)

1.0
0.6
0.2

1.0
0.6
0.2

In
te

ns
ity

 (a
.u

.)

Control bits 0101

Control bits 0110

Control bits 1010

Control bits 1001

1.2
0.8
0.4

0 12.5 dB

9.4 dB

1.2
0.8
0.4

0
(0, 1)

Input state (A, B)
(1, 0)

1.0
0.6
0.2

1.0
0.6
0.2

In
te

ns
ity

 (a
.u

.)

Control bits 0101

Control bits 0110

Control bits 1010

Control bits 1001

Control bits 0101

Input state (A, B)
(1, 1)(0, 1)(0, 0)

1.2
1.0
0.8
0.6
0.4
0.2

0
(1, 0)

In
te

ns
ity

 (a
.u

.)

Control bits 0110Control bits 1010
Control bits 1001

In
te

ns
ity

 (a
.u

.)

Input state (A, B)
(1, 1)(0, 1)(0, 0)

1.2
1.0
0.8
0.6
0.4
0.2

0
(1, 0)

Control bits 0101
Control bits 0110Control bits 1010

Control bits 1001

a b c d

e f g h

i j k l

Fig. S5 | Multifarious logic gate operators. (a, c, e, g, i, k,) 0–1 intensity distribution of three/four logic gates corresponding to three/four kinds

of control bits. (b, d, f, h, j, l,) Overlaid responses associated with three/four logic functions in a single structure corresponding to a, c, e, g, i, k,

respectively. The top red line shows the minimum value of logic state “1”, and the bottom red line shows the maximum value of logic state “0”.

40

20

0

Δγ
/γ

 (%
)

−20

−40

−2−3 −1 0
θ (rad)

1 2 3

0.200
MAE

0.175
0.150
0.125
0.100
0.075
0.050
0.025
0

a
40

20

0

Δγ
/γ

 (%
)

−20

−40

−2−3 −1 0
θ (rad)

1 2 3

0.200
MAE

0.175
0.150
0.125
0.100
0.075
0.050
0.025
0

b
40

20

0

Δγ
/γ

 (%
)

−20

−40

−2−3 −1 0
θ (rad)

1 2 3

0.38200
MAE

0.33420
0.28650
0.23880
0.19100
0.14320
0.09550
0.04775
0

c

Δγ
γ

Fig. S6 | Analysis of weight deviation tolerance. (a, b, c) Represent the test results of changing the weights of the first, second and

third layer, respectively. is the relative change of the amplitude ratio, and θ is the phase difference in each neuron layers. Different colors in

the figures correspond to different MAE values.

Opto-Electron Adv 4, 200060 (2021) https://doi.org/10.29026/oea.2021.200060

200060-S6

Table S1. In the table, waveguide numbers in blue indicate that they should have max intensity but do not due to pres-
ence of the defective waveguide, whereas waveguide numbers in red imply that they should not have max intensity but
they do. The light intensity distribution of output waveguide is shown in Fig. S7(a). It can be seen that when a wave-
guide in layer 1 or layer 2 is damaged, the error propagates to layer 3. Consequently, the output light intensity at posi-
tions near the damaged waveguide is increased. Moreover, the impact of waveguide damage occurring in layer 2 on the
distribution of output light intensity is significantly greater than that of waveguide damage occurring in layer 1. There-
fore, if the damaged waveguide is exactly at the position of the predicted sample’s solution, which means that it is sup-
posed to have max intensity, the waveguide damage will not have a significant effect on the positions and number of
solutions. Otherwise, it tends to produce an output at an incorrect location or mask the original output. However, for
waveguides of layer 3, since output waveguides are behind them directly, if the damaged waveguide is located on the po-
sition of solutions, the solution will go missing; otherwise, the solution will not be affected (see Fig. S7(b)).

 Section 6: Power consumption of optical neural network devices
Here we derive the power required to reach a given level of accuracy/performance for each of the optical CNN devices
described in the main text. We further assume that low-noise light sources and photon counting detectors are used such
that the ultimate noise floor is bound by the shot noise, which follows Poisson’s statistics.

For the half adder and the logic gates, the digital output is encoded in terms of light intensity. The device perform-
ance is therefore gauged by the bit error rate (BER), which is related to photon count via:

BER =
1
2
P0(N) =

1
2
N0e−N

0!
=

1
2
e−N , (S6)

where P0(N) is the probability of a mistake. The photon number N defines the threshold photon number required on
the receiver to detect a “1” bit. In our experimental result, the minimal overall error rate is found when error rate in state
“0” and “1” are equal. Therefore, we define the threshold energy to be detected as “1” equal to the geometric mean of the
energies of the state “1” and state “0”.

Considering 3.7 dB and 2.6 dB insertion losses for logic gate and half adder respectively, and apply Eq. S6 to our ex-
perimental result, the energy consumption per bit with respect to BER is plotted as Fig. S8(a). The figure

Table S1 | Outputs of a predicted sample under different conditions of waveguide fracture (k=2.18).

Number of the fractured waveguide

Layer 1 13

1 1, 2, 8, 13, 19, 24 2, 8, 11, 13, 19, 24

2 1, 2, 8, 13, 19, 24 2, 8, 13, 19, 24

3 2, 8, 13, 19, 24 2, 8, 12, 13, 14, 19, 24

14
12
10
8

In
te

ns
ity

 (a
.u

.)

6
4
2
0

0 5 10
Waveguide

15 20 25 Normal
Layer1 1st

Layer2 1st
Layer3 1st

Layer1 13th
Layer2 13th

Layer3 13th 1.0
0.8
0.6
0.4

In
te

ns
ity

 (a
.u

.)

0.2
0

0 5 10
Waveguide

15 20 25

Normal

Layer3 1st

a b

Fig. S7 | Analysis of waveguide damage tolerance. (a) Simulated light intensity distribution of output waveguides when the first or the thir-

teenth waveguide is damaged. The vertical axis corresponds to the output light intensity, the left horizontal axis labels the output waveguide num-

ber, and the right horizontal axis indicates the position of the damaged waveguide. (b) Comparison of light intensity distribution when the first

waveguide in layer 3 is damaged with that without waveguide damage. The damage of the first waveguide in layer 3 does not affect the output at

the second waveguide.

Opto-Electron Adv 4, 200060 (2021) https://doi.org/10.29026/oea.2021.200060

200060-S7

10−9indicates ultra-low power consumptions of 10.4 aJ/bit and 23.8 aJ/bit to achieve a BER in logic gate and half adder,

respectively.

For the transcendental equation solver, the performance is evaluated by the solution accuracy. Here we take the res-

ult shown in Fig. 3 in the main text as an example. The mean error of the solution (ER) can then expressed as the nor-

malized mean deviation to the true solution xsol:

ER = P(i11 is max)
(x11 − xsol)

xsol
+ P(i12 is max)

(x12 − xsol)
xsol

+ · · ·+ P(i17 is max)
(x17 − xsol)

xsol
, (S7)

In our calculation we only account for channels 11–17 since they are in the immediate neighborhood of the correct
output (channel 14). Each in here denote the output photon counts in channel number n, and we assume that they are
independent Poisson random variables with the parameter λn, which equals to the simulated photon count in each
channel. xn denotes the numerical solution value that channel n corresponds to. Taking channel 11 as an example, the
weighing factor which gives the probability of channel n = 11 having the highest output intensity (and hence x11 is re-
garded as the output solution from the optical neural network) is given by:

P(i11 is max) =
∞∑

i11=1

F12(i11) · · · F17(i11)e−λ11 λ
i11
11

i11!
, (S8)

where Fn(i11) is the cumulative distribution function of Possion random variable of channel n and is expressed by:

Fn(i11) = e−λn
i11−1∑
j=0

λj
n

j!
, (S9)

Solving Eqs. S8 and S9, we numerically computed the ER with respect to channel energy consumption (photon
count). The result is shown in Fig. S8(b). As indicated in the graph, increasing optical energy reduces the shot noise and
enhances the solution accuracy. The shot-noise-limited mean error converges to a limit bounded by the discreteness of
the network output at pulse energies above a few aJ/bit.

0
1E−12 1E−9 1E−6

BER
1E−3 1

10

20

30

En
er

gy
 c

on
su

m
pt

io
n

(a
J/

bi
t)

40

Logic gate
Half adder

0
0 5 10

Energy consumption (aJ/bit)
15 20

0.2

0.1

0.3

0.4

C
al

cu
la

tio
n

er
ro

r

0.5

Equation solver

a b

Fig. S8 | Calculation results of energy consumptions. (a) Energy consumption per bit of logic gate and half adder under different BER spe-

cifications. (b) Equation solver channel energy consumption with respect to mean error of the solution.

Opto-Electron Adv 4, 200060 (2021) https://doi.org/10.29026/oea.2021.200060

200060-S8

https://doi.org/10.29026/oea.2021.200060
https://doi.org/10.29026/oea.2021.200060

 Section 7: Performance benchmark and significance of this work
Here, we summerize the major research advances of on-chip integrated signal processors in Fig. S9.

To benchmark the performance of our ONN, we compare the performances of our ONNs with state-of-the-art listed
in Table S2.

References
 Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.
Biol Cybern 35, 193–202 (1980).

1.

 Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw 61, 85–117 (2015).2.
 Salahuddin S, Ni K, Datta S. The era of hyper-scaling in electronics. Nat Electron 1, 442–450 (2018).3.
 Yan H, Choe HS, Nam SW, Hu YJ, Das S et al. Programmable nanowire circuits for nanoprocessors. Nature 470, 240–244 (2011).4.
 Sun C, Wade MT, Lee Y, Orcutt JS, Alloatti L et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538
(2015).

5.

 Liu WL, Li M, Guzzon RS, Norberg EJ, Parker JS et al. A fully reconfigurable photonic integrated signal processor. Nat Photonics 10,
190–195 (2016).

6.

 Marpaung D, Yao JP, Capmany J. Integrated microwave photonics. Nat Photonics 13, 80–90 (2019).7.

1 10 100
Processing speed (Gbit/s)

1000

30.00

5.00

2.00

En
er

gy
 c

on
su

m
pt

io
n

(p
J/

bi
t)

0.10

0.05

Nature (2011)

1950 s-1980 s

Nature photonics (2016)
nature communication (2017)

1980 s -early 21st century

Nature (2019)
nature photonics (2017)

2017-2019

Von neumann architecture Neural network

Year

Electronic

Photoelectric

lntegrated crosstalk

Non-in-situ memory-Communication redundancy Memory operation

No integrated crosstalk

Vowel recognition

Pattern
recognition

This work

Realizing ultrafast and ultralow-
energy-consumption all-optical
computing:

Transcendental equation solver
Multifarious logic operations

Fig. S9 | Development of on-chip integrated signal processor. Major research advances of on-chip integrated signal processors.

Table S2 | Comparison of the performances of our ONNs with state-of-the-art

Comparison of the performances of our designed chip with the state-of-the-art works
Traditional electronic signal

processing chip
Traditional photoelectric signal

processing chip
This work

Predictable complex mathematical operations × × √

Programmable multifarious logic operations × × √

Overcoming integrated crosstalk × × √

Processing speed 1~10 Gbit/s3,4 10~100 Gbit/s5,6,7 >Tbit/s

Energy consumption 1~5 pJ/bit3,4 (1~50 mW) 0.19 pJ/bit5,6,7 (1.9~19 mW) 50.8 fJ/bit (0.508 mW)

Opto-Electron Adv 4, 200060 (2021) https://doi.org/10.29026/oea.2021.200060

200060-S9

https://doi.org/10.1007/BF00344251
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1038/s41928-018-0117-x
https://doi.org/10.1038/nature09749
https://doi.org/10.1038/nature16454
https://doi.org/10.1038/nphoton.2015.281
https://doi.org/10.1038/s41566-018-0310-5
https://doi.org/10.1007/BF00344251
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1038/s41928-018-0117-x
https://doi.org/10.1038/nature09749
https://doi.org/10.1038/nature16454
https://doi.org/10.1038/nphoton.2015.281
https://doi.org/10.1038/s41566-018-0310-5

	Section 1: Convolutional neural networks
	Section 2: Method of adjusting weight ω
	Section 3: All-optical transcendental equation solvers
	Training details
	Network performances with k =1.84 and 2.35

	Section 4: Multifarious logic gate operators
	Section 5: Fault tolerance of our networks
	Section 6: Power consumption of optical neural network devices
	Section 7: Performance benchmark and significance of this work

