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 Section 1: Convolutional neural networks
Convolutional Neural Network (CNN) is one of the representative algorithms of deep learning, which is a type of Feed-
forward Neural  Networks  including convolution computation and usually  has  a  depth structure.  They are  widely  ap-
plied in the fields of natural language processing and image recognition1. CNNs usually process data in the form of mul-
tiple arrays: one dimensional arrays for signals and sentences, two dimensional arrays for images and audio spectrums
and three dimensional arrays for videos and volumetric images2. Generally, CNNs contain convolutional layers, pooling
layers and fully-connected layers. In the convolutional layers there are convolutional kernels, padding and active func-
tions, which  are  all  parameters  of  the  convolutional  layers.  The  unique  advantages  of  high  precision  in  image  pro-
cessing benefit from the properties of local perception and parameter sharing of CNNs, maintaining high accuracy un-
der translation, rotation and scaling of samples.

Given that in our networks we need to input a single light or a sequence of light signals into the network, CNNs nat-
urally meet our demands because of their ability to protect signals from distortion. Moreover, comparing to fully-con-
nected layers, convolutional layers require only local connections and thus avoid large numbers of waveguide crossings.
The difference between a 1D convolutional layer and a fully-connected layer is showed in Fig. S1. A fully-connected lay-
er uses different weights in every connection,  while  in a convolutional  layer a convolutional  kernel,  which has shared
weights in it, is used for addressing all signals in the current layer.

For the simplest 1D convolutional layer with stride = 1 (the step size of each movement is 1 in signal processing) and
only one input channel, the relationship between the input and the output can be described as: 

yi = f(bias+
∑k−1

j=0
weightj × xi+j) , (S1)

yiwhere k is the size of the kernel, x is the input sequence, y is the output sequence, the bias is a constant for , and f(x) is
called the activation function which is usually nonlinear. However, for a fully-connected layer with the same structure,
the relationship between x and y changes into: 

yi = f
(
bias+

∑l−1

j=0
weightij × xj

)
, (S2)

where l is the length of the input sequence, which is irrelevant in a convolutional layer. We use 1D convolutional net-
works to solve transcendental equations since shared weights in each layer are enough to control the network. We also
disable bias and f(x) considering that our devices are linear.

Cin 3× 3 K
2× 2 Cout

For 2D convolutional layers, the basic operation principle is similar to that of 1D convolutional layer and can be de-
scribed with matrices. For instance, if the input  is a matrix with a size of  and the kernel  is a matrix with a
size of , then the output  can be calculated as (stride = 1): 

Cin =

[ a11 a12 a13
a21 a22 a23
a31 a32 a33

]
,K =

[ w11 w12
w21 w22

]
, (S3)

A1 =

[
a11 a12
a21 a22

]
,A2 =

[
a12 a13
a22 a23

]
,A3 =

[
a21 a22
a31 a32

]
,A4 =

[
a22 a23
a31 a33

]
,we define: 

 

Cout =

[
A1 : K A2 : K
A3 : K A4 : K

]
, (S4)

An : K =
∑

i

∑
j AnijKij

[
r0 r1 · · ·

]  r0 r1 0 0 · · ·
0 0 r1 r2 · · ·
...

...
...

...
. . .


where . We use 2D convolutional layers to train our CNNs for the multifarious logic gate operat-
ors and half-adder, because shared weights cannot meet our demands in these two scenarios. Thus, we transform the in-

put sequence from  into  and input it into CNNs. After the training process, we

only extract the weights corresponding to the non-zero positions. In this way, we can both avoid the problem that wave-
guides cannot cross and maximize the ability to control neural networks. We apply stochastic gradient descent (SGD) in
our optimizer as it exhibits good performances in the CNN learning process. 

Opto-Electron Adv  4, 200060 (2021) https://doi.org/10.29026/oea.2021.200060

200060-S2

 



 Section 2: Method of adjusting weight ω

a b

We use a weight modulator (WM) positioned next to the transmission waveguide (TW) to adjust weight. WM is a small
segment of  silicon  waveguide  which  has  the  same  width  as  that  of  TW  (to  ensure  efficient  coupling).  Through  con-
trolling the length ( ) of WM and the gap width ( ) between the WM and the waveguide, we can adjust magnitude and
phase of the weight.

As  stated  in  optical  waveguide  theory,  when  light  waves  propagate  in  two  coupled  waveguides,  power  transfer
between  the  two  waveguides  periodically.  When  the  two  waveguides  are  close  enough  and  the  modes  propagating
through the two waveguides are similar, the two waveguides can strongly couple to each other. If the two waveguides are
identical  and  each  only  supports  a  single  mode,  as  in  the  case  of  our  WM  and  TW,  complete  power  transfer  occurs
between the two coupled waveguides.

a b

a/L a b b
ω a b

Here we use L, , and  to denote beat length in the coupled waveguide system, coupling length of two waveguides,
and gap width between the two waveguides, respectively. The amount of light power remaining in TW is dictated by the
ratio , while  is readily adjusted by changing . As Fig. S2 shows, with increasing , L increases monotonically. We
can therefore adjust the magnitude of weight  simply via choosing suitable  and  values (Fig. 2(b)).

a
b ω a b ω
0 2π ω

ω ω ±0.09

The beating length changes with b, and the phase accumulation scales with beating length. So, through controlling 
and , we can adjust phase of weight . As Fig. 2(c) shows, by choosing suitable  and , phase of weight  can change
from  to . In this work, we choose to adjust the magnitude of weight , while keeping phase in an almost constant
range. The magnitude of  can be tuned from 0.3 to 0.95 when the variation range of the phase  is  rad. Another
alternative method is to vary the width of the WM waveguide, while keeping at equaling to the beat length to realize the
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Fig. S1 | Structure comparison of CNN with fully-connected network neural network. (a) The structure of a fully-connected network having

three fully-connected layers. (b) The structure of a 1D convolutional network having three 1D convolutional layers. (c) Schematic diagram of con-

volution neural network consisting of convolutional layers and convolutional kernels. H and N in the diagram represent the height and width of the

processed signal, respectively. The signal between layers is transmitted through a convolutional operation , Where h repres-

ents the sequence number of the signal to be processed,  and  represent the lth and (l–1)th layer’s convolutional signal states respectively,

and  represents the convolutional kernel.
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Fig. S2 | Regulation mechanism of proposed weight modulator. The relationship between L and b, where the black points is the simulation

result, and the red line is the fit result. The illustration is the simulation result of the electric field distribution.
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effective phase modulation.
ω

a b
ω ω ω

0 2π

A more efficient way to achieve a photonic computer is to maintain the magnitude of weight  close to 1 (which min-
imizes insertion loss of the entire photonic circuit), while adjusting the phase in the optical neural network. This condi-
tion can be accomplished by choosing  as an integer multiple of beat length L while varying  to obtain the target phase
of . As Fig. S3 shows, using this approach, we can keep the magnitude of  close to 1 and changing the phase of  from

 to . 

 Section 3: All-optical transcendental equation solvers 

Training details

k

k

π

PyTorch,  a  custom package in Python was used to construct  the theoretical  modeling of  our optical  neural  networks.
The calculation was based on 1D CNN used for the equation solver. We apply stochastic gradient descent (SGD) in the
learning  process  to  compute  the  parameters  and  minimize  the  loss  function  related  to  the  model’s  performance.  By
changing the parameter  of the equation with a step size of 0.1, 12 training samples were obtained, which were used to
train the weight ω. 2,000 iterations of the algorithm were performed to optimize the network weights that can imple-
ment the predictive solution function. After that, parameter  is chosen to increase 0.17 per step (to be different from
the training samples) to execute the task of the equation solver. Two arms of the “Y” structure waveguide correspond to
two  kinds  of  weights,  and  the  bifurcated  waveguide  is  used  as  an  element  structure  to  extend  the  equal  longitudinal
weight and variable lateral weight, thus two kinds of weights for each layer are obtained. The three-layer network has a
total of six kinds of weights, and one kind of weight in the third layer gives a negative value, indicating that the phase
difference  is introduced. 

Network performances with k =1.84 and 2.35

k

k

In order  to  show the  practical  performance  of  the  equation solver,  we  experimentally  demonstrated  three  of  the  pre-
dicted transcendental equations with different parameters k as 1.67, 1.84 and 2.35 respectively. Three structures similar
to the one shown in Fig. 1(c) were fabricated, each containing a different set of waveform discretization layers to gener-
ate light intensity distributions in the feeding waveguides into the 3-layer optical CNN corresponding to the three  val-
ues. We make the maximum values of output intensity corresponding to the solutions of the equation. To illustrate the
performance of the equation solver, we compare the experimental results with theoretical predictions. Here we demon-
strate the rest of two results where  =1.84 and 2.35 (Fig. S4). As we can see from the figure, the result shows that our
transcendental equation solvers have high accuracy. The maximum deviation between the actual solutions and the tar-
get solutions is no more than 5%, and most of them are no more than 3%. 
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 Section 4: Multifarious logic gate operators
Sixteen logic functions (representing exhaustive combinations of output results corresponding to all four possible input
signals 11, 10, 01, and 00 is 24= 16) have been realized in seven structures by optimizing every different weight of the
network and the combination between weights and control bits. Each structure can execute 3 or 4 logic functions with
appropriate control bit inputs. Here we present the results obtained on six of the seven structures (except the one dis-
cussed in the main text). As we can see from Fig. S5(a, c, e, g, i, k), when the weights and control bits of the network are
varied, multifarious logic gate operators are realized. The experimental results show that the high contracts are main-
tained in each structure capable of performing multiple logic functions. Distinguishability of 0 and 1 indicates that mul-
tifunctional logic can be implemented on one structure (Fig. S5(b, d, f, h, j, l)). 

 Section 5: Fault tolerance of our networks
Optical neural network (ONN) offers excellent fault tolerance which is essential to scalable and defect-tolerant manufac-
turing of the all-optical chip. Taking the transcendental equation solver as an example, we mainly studied impact of two
types of imperfections,  weight deviation and waveguide fracture on solution deviation. Mean absolute error (MAE) is
utilized to quantify the solution deviation: 

MAE =

∑
|Ri − Ri0|
N×M

, (S5)

N
s Ri0

Ri

N

M is the number of output waveguides;  is the number of predicted samples (predicted samples are defined as tran-
scendental  equations  of  identical  general  form  with  different  parameter );  is  the  sequence  number  of  the  output
waveguide that is supposed to have max intensity for a predicted sample;  is the sequence number of the output wave-
guide that has max intensity when given an input of the predicted sample. The summation covers all predicted samples,
divided by  and M to get the MAE.

In traditional computer neural networks, the transmission of information between “neurons” depends on the weight
of their connections with each other. Similarly, by adjusting the amplitude and phase of the light field in the transmis-
sion  process,  ONNs can  realize  the  information  transmission  between  layers.  Therefore,  tolerance  of  ONN to  weight
variations is crucial, which directly reflects the stability of ONNs. In our ONNs, since we only concern about the relat-
ive distribution of  light  intensity among output waveguides,  only the phase difference and the amplitude ratio of  two
weights in each neuron layers can have an impact on the accuracy of the results. As shown in Fig. S6, by changing the
amplitude ratio and phase difference of the weights in three layers separately,  simulated variations in the MAE of the
outputs are presented.

Another  possible  cause  of  undesired  deviation  is  propagation  loss  variation  in  the  waveguides.  For  simplicity  and
without losing generality,  here we consider the extreme case where a waveguide segment is  completely damaged such
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Fig. S4 | All-optical  transcendental  equation  solver  with  different  parameters k. (a)  Distribution  of  output  light  intensity  in  the  discretized
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k = 2.18

that no optical signal can be transmitted into the neurons of the next layer. We found that the effect was only observed
around the damaged waveguide, and almost no effect was observed in waveguides far away from the damaged one. For
instance, in the predicted sample where , it should light up the waveguides numbered 2, 8, 13, 19, and 24. When
the first waveguide or the thirteenth waveguide in layer 1, layer 2, or layer 3 is damaged, we obtain outputs as shown in
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Table S1. In the table, waveguide numbers in blue indicate that they should have max intensity but do not due to pres-
ence of the defective waveguide, whereas waveguide numbers in red imply that they should not have max intensity but
they do.  The light intensity distribution of  output waveguide is  shown in Fig. S7(a). It  can be seen that  when a wave-
guide in layer 1 or layer 2 is damaged, the error propagates to layer 3. Consequently, the output light intensity at posi-
tions near the damaged waveguide is increased. Moreover, the impact of waveguide damage occurring in layer 2 on the
distribution of output light intensity is significantly greater than that of waveguide damage occurring in layer 1. There-
fore, if the damaged waveguide is exactly at the position of the predicted sample’s solution, which means that it is sup-
posed to have max intensity,  the waveguide damage will  not  have a  significant  effect  on the positions and number of
solutions. Otherwise, it tends to produce an output at an incorrect location or mask the original output. However, for
waveguides of layer 3, since output waveguides are behind them directly, if the damaged waveguide is located on the po-
sition of solutions, the solution will go missing; otherwise, the solution will not be affected (see Fig. S7(b)). 

 Section 6: Power consumption of optical neural network devices
Here we derive the power required to reach a given level of accuracy/performance for each of the optical CNN devices
described in the main text. We further assume that low-noise light sources and photon counting detectors are used such
that the ultimate noise floor is bound by the shot noise, which follows Poisson’s statistics.

For the half adder and the logic gates, the digital output is encoded in terms of light intensity. The device perform-
ance is therefore gauged by the bit error rate (BER), which is related to photon count via: 

BER =
1
2
P0(N) =

1
2
N0e−N

0!
=

1
2
e−N , (S6)

where P0(N) is the probability of a mistake. The photon number N defines the threshold photon number required on
the receiver to detect a “1” bit. In our experimental result, the minimal overall error rate is found when error rate in state
“0” and “1” are equal. Therefore, we define the threshold energy to be detected as “1” equal to the geometric mean of the
energies of the state “1” and state “0”.

Considering 3.7 dB and 2.6 dB insertion losses for logic gate and half adder respectively, and apply Eq. S6 to our ex-
perimental  result,  the  energy  consumption  per  bit  with  respect  to  BER  is  plotted  as Fig. S8(a).  The  figure

 
Table S1 | Outputs of a predicted sample under different conditions of waveguide fracture (k=2.18).

 

Number of the fractured waveguide

Layer 1 13

1 1, 2, 8, 13, 19, 24 2, 8, 11, 13, 19, 24

2 1, 2, 8, 13, 19, 24 2, 8, 13, 19, 24

3 2, 8, 13, 19, 24 2, 8, 12, 13, 14, 19, 24
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Fig. S7 | Analysis  of  waveguide  damage tolerance. (a) Simulated  light  intensity  distribution  of  output  waveguides  when the  first  or  the  thir-

teenth waveguide is damaged. The vertical axis corresponds to the output light intensity, the left horizontal axis labels the output waveguide num-

ber,  and the right  horizontal  axis indicates the position of  the damaged waveguide.  (b)  Comparison of  light  intensity  distribution when the first

waveguide in layer 3 is damaged with that without waveguide damage. The damage of the first waveguide in layer 3 does not affect the output at

the second waveguide.
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10−9indicates ultra-low power consumptions of 10.4 aJ/bit and 23.8 aJ/bit to achieve a  BER in logic gate and half adder,

respectively.

For the transcendental equation solver, the performance is evaluated by the solution accuracy. Here we take the res-

ult shown in Fig. 3 in the main text as an example. The mean error of the solution (ER) can then expressed as the nor-

malized mean deviation to the true solution xsol:
 

ER = P(i11 is max)
(x11 − xsol)

xsol
+ P(i12 is max)

(x12 − xsol)
xsol

+ · · ·+ P(i17 is max)
(x17 − xsol)

xsol
, (S7)

In our calculation we only account for channels 11–17 since they are in the immediate neighborhood of the correct
output (channel 14). Each in here denote the output photon counts in channel number n, and we assume that they are
independent  Poisson  random  variables  with  the  parameter λn,  which  equals  to  the  simulated  photon  count  in  each
channel. xn denotes the numerical solution value that channel n corresponds to. Taking channel 11 as an example, the
weighing factor which gives the probability of channel n = 11 having the highest output intensity (and hence x11 is re-
garded as the output solution from the optical neural network) is given by: 

P(i11 is max) =
∞∑

i11=1

F12(i11) · · · F17(i11)e−λ11 λ
i11
11

i11!
, (S8)

where Fn(i11) is the cumulative distribution function of Possion random variable of channel n and is expressed by: 

Fn(i11) = e−λn
i11−1∑
j=0

λj
n

j!
, (S9)

Solving Eqs.  S8 and S9,  we  numerically  computed  the  ER  with  respect  to  channel  energy  consumption  (photon
count). The result is shown in Fig. S8(b). As indicated in the graph, increasing optical energy reduces the shot noise and
enhances the solution accuracy. The shot-noise-limited mean error converges to a limit bounded by the discreteness of
the network output at pulse energies above a few aJ/bit. 
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 Section 7: Performance benchmark and significance of this work
Here, we summerize the major research advances of on-chip integrated signal processors in Fig. S9.

To benchmark the performance of our ONN, we compare the performances of our ONNs with state-of-the-art listed
in Table S2.
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Table S2 | Comparison of the performances of our ONNs with state-of-the-art

 

Comparison of the performances of our designed chip with the state-of-the-art works
Traditional electronic signal

processing chip
Traditional photoelectric signal

processing chip
This work

Predictable complex mathematical operations × × √

Programmable multifarious logic operations × × √

Overcoming integrated crosstalk × × √

Processing speed 1~10 Gbit/s3,4 10~100 Gbit/s5,6,7 >Tbit/s

Energy consumption 1~5 pJ/bit3,4 (1~50 mW) 0.19 pJ/bit5,6,7 (1.9~19 mW) 50.8 fJ/bit (0.508 mW)
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